Keywords: generalized $MV$-algebra; isometry; direct product decomposition
@article{CMJ_2007_57_1_a13,
author = {Jakub{\'\i}k, J\'an},
title = {Isometries of generalized $MV$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {161--171},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309957},
zbl = {1174.06316},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a13/}
}
Jakubík, Ján. Isometries of generalized $MV$-algebras. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 161-171. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a13/
[1] G. Birkhoff: Lattice Theory. American Mathematical Society, Providence, 1967. | MR | Zbl
[2] R. Cignoli, I. M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. | MR
[3] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl
[4] A. Dvurečenskij: Pseudo $MV$-algebras are intervals of $\ell $-groups. J. Austral. Math. Soc. 72 (2002), 427–445. | DOI | MR
[5] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras: a non-commutative extension of $MV$-algebras. Proc. Fourth. Internal Symp. Econ. Inf., INFOREC, Bucharest, 1999, pp. 961–968.
[6] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras. Multiple-Valued Logic 6 (2001), 95–135. | MR
[7] Ch. Holland: Intrinsic metrics for lattice ordered groups. Alg. Universalis 19 (1984), 142–150. | DOI | MR | Zbl
[8] J. Jakubík: Isometries of lattice ordered groups. Czechoslovak Math. J. 30 (1980), 142–152. | MR
[9] J. Jakubík: On intervals and isometries of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 651–663. | DOI | MR
[10] J. Jakubík: Direct product decompositions of pseudo $MV$-algebras. Archivum math. 37 (2001), 131–142. | MR
[11] J. Jakubík: Isometries of $MV$-algebras. Math. Slovaca 54 (2004), 43–48. | MR
[12] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 255–273. | DOI | MR
[13] K. L. Swamy: Izometries in autometrized lattice ordered groups. Algebra Univ. 8 (1977), 58–64.