Isometries of generalized $MV$-algebras
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 161-171 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate the relations between isometries and direct product decompositions of generalized $MV$-algebras.
In this paper we investigate the relations between isometries and direct product decompositions of generalized $MV$-algebras.
Classification : 03G25, 06D35
Keywords: generalized $MV$-algebra; isometry; direct product decomposition
@article{CMJ_2007_57_1_a13,
     author = {Jakub{\'\i}k, J\'an},
     title = {Isometries of generalized $MV$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {161--171},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309957},
     zbl = {1174.06316},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a13/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Isometries of generalized $MV$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 161
EP  - 171
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a13/
LA  - en
ID  - CMJ_2007_57_1_a13
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Isometries of generalized $MV$-algebras
%J Czechoslovak Mathematical Journal
%D 2007
%P 161-171
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a13/
%G en
%F CMJ_2007_57_1_a13
Jakubík, Ján. Isometries of generalized $MV$-algebras. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 161-171. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a13/

[1] G. Birkhoff: Lattice Theory. American Mathematical Society, Providence, 1967. | MR | Zbl

[2] R. Cignoli, I. M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. | MR

[3] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl

[4] A. Dvurečenskij: Pseudo $MV$-algebras are intervals of $\ell $-groups. J. Austral. Math. Soc. 72 (2002), 427–445. | DOI | MR

[5] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras: a non-commutative extension of $MV$-algebras. Proc. Fourth. Internal Symp. Econ. Inf., INFOREC, Bucharest, 1999, pp. 961–968.

[6] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras. Multiple-Valued Logic 6 (2001), 95–135. | MR

[7] Ch. Holland: Intrinsic metrics for lattice ordered groups. Alg. Universalis 19 (1984), 142–150. | DOI | MR | Zbl

[8] J. Jakubík: Isometries of lattice ordered groups. Czechoslovak Math. J. 30 (1980), 142–152. | MR

[9] J. Jakubík: On intervals and isometries of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 651–663. | DOI | MR

[10] J. Jakubík: Direct product decompositions of pseudo $MV$-algebras. Archivum math. 37 (2001), 131–142. | MR

[11] J. Jakubík: Isometries of $MV$-algebras. Math. Slovaca 54 (2004), 43–48. | MR

[12] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 255–273. | DOI | MR

[13] K. L. Swamy: Izometries in autometrized lattice ordered groups. Algebra Univ. 8 (1977), 58–64.