Weighted endpoint estimates for commutators of fractional integrals
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 153-160 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Given $\alpha $, $0\alpha
Given $\alpha $, $0\alpha $, and $b\in {\mathrm BMO}$, we give sufficient conditions on weights for the commutator of the fractional integral operator, $[b,I_\alpha ]$, to satisfy weighted endpoint inequalities on $\mathbb{R}^n$ and on bounded domains. These results extend our earlier work [3], where we considered unweighted inequalities on $\mathbb{R}^n$.
Classification : 26A33, 42B20, 42B25
Keywords: fractional integrals; commutators; BMO; weights; Orlicz spaces; maximal functions
@article{CMJ_2007_57_1_a12,
     author = {Cruz-Uribe, D., SFO and Fiorenza, A.},
     title = {Weighted endpoint estimates for commutators of fractional integrals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {153--160},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309956},
     zbl = {1174.42013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a12/}
}
TY  - JOUR
AU  - Cruz-Uribe, D., SFO
AU  - Fiorenza, A.
TI  - Weighted endpoint estimates for commutators of fractional integrals
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 153
EP  - 160
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a12/
LA  - en
ID  - CMJ_2007_57_1_a12
ER  - 
%0 Journal Article
%A Cruz-Uribe, D., SFO
%A Fiorenza, A.
%T Weighted endpoint estimates for commutators of fractional integrals
%J Czechoslovak Mathematical Journal
%D 2007
%P 153-160
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a12/
%G en
%F CMJ_2007_57_1_a12
Cruz-Uribe, D., SFO; Fiorenza, A. Weighted endpoint estimates for commutators of fractional integrals. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 153-160. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a12/

[1] S. Chanillo: A note on commutators. Indiana Math. J. 31 (1982), 7–16. | DOI | MR | Zbl

[2] D.  Cruz-Uribe, SFO: New proofs of two-weight norm inequalities for the maximal operator. Georgian Math. J. 7 (2000), 33–42. | DOI | MR

[3] D. Cruz-Uribe, SFO, A. Fiorenza: Endpoint estimates and weighted norm inequalities for commutators of fractional integrals. Publ. Mat. 47 (2003), 103–131. | DOI | MR

[4] J. Duoandikoetxea: Fourier Analysis. Grad. Studies Math. Vol. 29. Am. Math. Soc., Providence, 2000. | MR

[5] J.  García-Cuerva, J. L. Rubio de Francia: Weighted Norm Inequalities and Related Topics. Math. Studies Vol. 116. North Holland, Amsterdam, 1985. | MR

[6] L. Maligranda: Orlicz spaces and interpolation. Seminars in Mathematics  5, IMECC, Universidad Estadual de Campinas, Campinas, 1989. | MR | Zbl

[7] B. Muckenhoupt, R. Wheeden: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192 (1974), 261–274. | DOI | MR

[8] C.  Pérez: On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted $L^p$-spaces with different weights. Proc. London Math. Soc. 71 (1995), 135–157. | MR

[9] C. Pérez: Endpoint estimates for commutators of singular integral operators. J.  Funct. Anal. 128 (1995), 163–185. | DOI | MR

[10] M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces. Marcel Dekker, New York, 1991. | MR