Generalized induced norms
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 127-133
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\Vert {\cdot }\Vert $ be a norm on the algebra ${\mathcal M}_n$ of all $n\times n$ matrices over ${\mathbb{C}}$. An interesting problem in matrix theory is that “Are there two norms $\Vert {\cdot }\Vert _1$ and $\Vert {\cdot }\Vert _2$ on ${\mathbb{C}}^n$ such that $\Vert A\Vert =\max \lbrace \Vert Ax\Vert _{2}\: \Vert x\Vert _{1}=1\rbrace $ for all $A\in {\mathcal M}_n$?” We will investigate this problem and its various aspects and will discuss some conditions under which $\Vert {\cdot }\Vert _1=\Vert {\cdot }\Vert _2$.
Let $\Vert {\cdot }\Vert $ be a norm on the algebra ${\mathcal M}_n$ of all $n\times n$ matrices over ${\mathbb{C}}$. An interesting problem in matrix theory is that “Are there two norms $\Vert {\cdot }\Vert _1$ and $\Vert {\cdot }\Vert _2$ on ${\mathbb{C}}^n$ such that $\Vert A\Vert =\max \lbrace \Vert Ax\Vert _{2}\: \Vert x\Vert _{1}=1\rbrace $ for all $A\in {\mathcal M}_n$?” We will investigate this problem and its various aspects and will discuss some conditions under which $\Vert {\cdot }\Vert _1=\Vert {\cdot }\Vert _2$.
Classification :
15A60, 46B99, 47A30
Keywords: induced norm; generalized induced norm; algebra norm; the full matrix algebra; unitarily invariant; generalized induced congruent
Keywords: induced norm; generalized induced norm; algebra norm; the full matrix algebra; unitarily invariant; generalized induced congruent
@article{CMJ_2007_57_1_a10,
author = {Hejazian, S. and Mirzavaziri, M. and Moslehian, M. S.},
title = {Generalized induced norms},
journal = {Czechoslovak Mathematical Journal},
pages = {127--133},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309954},
zbl = {1174.15016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a10/}
}
Hejazian, S.; Mirzavaziri, M.; Moslehian, M. S. Generalized induced norms. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 127-133. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a10/