@article{CMJ_2006_56_4_a9,
author = {Lazi\'c, Mirjana},
title = {On the {Laplacian} energy of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {1207--1213},
year = {2006},
volume = {56},
number = {4},
mrnumber = {2280804},
zbl = {1164.05408},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a9/}
}
Lazić, Mirjana. On the Laplacian energy of a graph. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1207-1213. http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a9/
[1] D. Cvetković, M. Doob, and H. Sachs: Spectra of Graphs—Theory and Application. VEB Deutscher Verlag der Wissenschaften, Berlin-New York, 1980. | MR
[2] D. Cvetković, M. Doob, I. Gutman, and A. Torgašev: Recent Results in the Theory of Graph Spectra. Ann. Discrete Math. 36. North-Holland, Amsterdam, 1988. | MR
[3] D. Cvetković, M. Petrić: A table of connected graphs with six vertices. Discrete Math. 50 (1984), 37–49. | DOI | MR
[4] R. Grone, R. Merris, V. Sunder: The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11 (1990), 218–238. | DOI | MR
[5] R. Merris: Laplacian matrices of graphs. A survey. Linear Algebra and its Appl. 197, 198 (1994), 143–176. | MR | Zbl
[6] A. Torgašev: Graphs whose energy does not exceed 3. Czechoslovak Math. J. 36 (1986), 167–171. | MR