Keywords: max algebra; linear operator; pair of commuting matrices
@article{CMJ_2006_56_4_a7,
author = {Song, Seok-Zun and Kang, Kyung-Tae and Jun, Young-Bae},
title = {Invertible commutativity preservers of matrices over max algebra},
journal = {Czechoslovak Mathematical Journal},
pages = {1185--1192},
year = {2006},
volume = {56},
number = {4},
mrnumber = {2280802},
zbl = {1164.15303},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a7/}
}
TY - JOUR AU - Song, Seok-Zun AU - Kang, Kyung-Tae AU - Jun, Young-Bae TI - Invertible commutativity preservers of matrices over max algebra JO - Czechoslovak Mathematical Journal PY - 2006 SP - 1185 EP - 1192 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a7/ LA - en ID - CMJ_2006_56_4_a7 ER -
Song, Seok-Zun; Kang, Kyung-Tae; Jun, Young-Bae. Invertible commutativity preservers of matrices over max algebra. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1185-1192. http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a7/
[1] L. B. Beasley: Linear transformations on matrices: the invariance of commuting pairs of matrices. Linear and Multilinear Algebra 6 (1978), 179–183. | DOI | MR | Zbl
[2] L. B. Beasley and N. J. Pullman: Linear operators that strongly preserve commuting pairs of fuzzy matrices. Fuzzy Sets and Systems 41 (1991), 167–173. | DOI | MR
[3] P. Moller: Theorie algebrique des Systemes a Evenements Discrets. These, Ecole des Mines de Paris, 1988.
[4] S. Z. Song and K. T. Kang: Column ranks and their preservers of matrices over max algebra. Linear and Multilinear Algebra 51 (2003), 311–318. | DOI | MR
[5] W. Watkins: Linear maps that preserve commuting pairs of matrices. Linear Algebra and Appl. 14 (1976), 29–35. | DOI | MR | Zbl