@article{CMJ_2006_56_4_a6,
author = {Kang, Joon Hyuk and Lee, Jungho},
title = {Steady state coexistence solutions of reaction-diffusion competition models},
journal = {Czechoslovak Mathematical Journal},
pages = {1165--1183},
year = {2006},
volume = {56},
number = {4},
mrnumber = {2280801},
zbl = {1164.35351},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a6/}
}
TY - JOUR AU - Kang, Joon Hyuk AU - Lee, Jungho TI - Steady state coexistence solutions of reaction-diffusion competition models JO - Czechoslovak Mathematical Journal PY - 2006 SP - 1165 EP - 1183 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a6/ LA - en ID - CMJ_2006_56_4_a6 ER -
Kang, Joon Hyuk; Lee, Jungho. Steady state coexistence solutions of reaction-diffusion competition models. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1165-1183. http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a6/
[1] R. S. Cantrell and C. Cosner: On the steady-state problem for the Volterra-Lotka competition model with diffusion. Houston Journal of mathematics 13 (1987), 337–352. | MR
[2] R. S. Cantrell and C. Cosner: On the uniqueness and stability of positive solutions in the Volterra-Lotka competition model with diffusion. Houston J. Math. 15 (1989), 341–361. | MR
[3] C. Cosner and A. C. Lazer: Stable coexistence states in the Volterra-Lotka competition model with diffusion. Siam J. Appl. Math. 44 (1984), 1112–1132. | DOI | MR
[4] D. Dunninger: Lecture note for applied analysis at Michigan State University.
[5] R. Courant and D. Hilbert: Methods of Mathematical Physics, Vol. 1. Interscience, New York, 1961.
[6] C. Gui and Y. Lou: Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model. Comm. Pure and Appl. Math. 12 (1994), 1571–1594. | MR
[7] J. L. Gomez and J. P. Pardo: Existence and uniqueness for some competition models with diffusion. C.R. Acad. Sci. Paris, 313 Série 1 (1991), 933–938. | MR
[8] P. Hess: On uniqueness of positive solutions of nonlinear elliptic boundary value problems. Math. Z. 165 (1977), 17–18. | MR | Zbl
[9] L. Li and R. Logan: Positive solutions to general elliptic competition models. Differential and Integral Equations 4 (1991), 817–834. | MR
[10] A. Leung: Equilibria and stabilities for competing-species, reaction-diffusion equations with Dirichlet boundary data. J. Math. Anal. Appl. 73 (1980), 204–218. | DOI | MR | Zbl
[11] M. H. Protter and H. F. Weinberger: Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs, N. J., 1967. | MR
[12] I. Stakgold and L. E. Payne: Nonlinear Problems in Nuclear Reactor Analysis. In nonlinear Problems in the Physical Sciences and Biology, Lecture notes in Mathematics 322, Springer, Berlin, 1973, pp. 298–307.