@article{CMJ_2006_56_4_a5,
author = {Bermudo, S. and Marcantognini, S. A. M. and Mor\'an, M. D.},
title = {Operators of {Hankel} type},
journal = {Czechoslovak Mathematical Journal},
pages = {1147--1163},
year = {2006},
volume = {56},
number = {4},
mrnumber = {2280800},
zbl = {1164.47326},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a5/}
}
Bermudo, S.; Marcantognini, S. A. M.; Morán, M. D. Operators of Hankel type. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1147-1163. http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a5/
[1] D. Z. Arov and L. Z. Grossman: Scattering matrices in the theory of extensions of isometric operators. Soviet Math. Dokl. 27 (1983), 518–522. | MR
[2] M. Cotlar and C. Sadosky: Prolongements des formes de Hankel généralisées et formes de Toeplitz. C. R. Acad. Sci Paris Sér. I Math. 305 (1987), 167–170. | MR
[3] M. Cotlar and C. Sadosky: Integral representations of bounded Hankel forms defined in scattering systems with a multiparametric evolution group. Operator Theory: Adv. Appl. 35 (1988), 357–375. | MR
[4] A. Dijksma, S. A. M. Marcantognini and H. S. V. de Snoo: A Schur type analyisis of the minimal unitary Hilbert space extensions of a Kreĭn space isometry whose defect subspaces are Hilbert spaces. Z. Anal. Anwendungen 13 (1994), 233–260. | DOI | MR
[5] R. G. Douglas: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17 (1966), 413–415. | DOI | MR | Zbl
[6] C. H. Mancera and P. J. Paúl: On Pták’s generalization of Hankel operators. Czechoslovak Math. J. 51 (2001), 323–342. | DOI | MR
[7] C. H. Mancera and P. J. Paúl: Compact and finite rank operators satisfying a Hankel type equation $T_2X = XT_1^*$. Integral Equations Operator Theory 39 (2001), 475–495. | MR
[8] M. D. Morán: On intertwining dilations. J. Math. Anal. Appl. 141 (1989), 219–234. | DOI | MR
[9] V. Pták: Factorization of Toeplitz and Hankel operators. Math. Bohem. 122 (1997), 131–140. | MR
[10] V. Pták and P. Vrbová: Operators of Toeplitz and Hankel type. Acta Sci. Math. (Szeged) 52 (1988), 117–140.
[11] V. Pták and P. Vrbová: Lifting intertwining relations. Integral Equations Operator Theory 11 (1988), 128–147. | DOI | MR