Operators of Hankel type
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1147-1163 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Hankel operators and their symbols, as generalized by V. Pták and P. Vrbová, are considered. The present note provides a parametric labeling of all the Hankel symbols of a given Hankel operator $X$ by means of Schur class functions. The result includes uniqueness criteria and a Schur like formula. As a by-product, a new proof of the existence of Hankel symbols is obtained. The proof is established by associating to the data of the problem a suitable isometry $V$ so that there is a bijective correspondence between the symbols of $X$ and the minimal unitary extensions of $V$.
Hankel operators and their symbols, as generalized by V. Pták and P. Vrbová, are considered. The present note provides a parametric labeling of all the Hankel symbols of a given Hankel operator $X$ by means of Schur class functions. The result includes uniqueness criteria and a Schur like formula. As a by-product, a new proof of the existence of Hankel symbols is obtained. The proof is established by associating to the data of the problem a suitable isometry $V$ so that there is a bijective correspondence between the symbols of $X$ and the minimal unitary extensions of $V$.
Classification : 47A20, 47B35
Keywords: Hankel operators; Hankel symbols
@article{CMJ_2006_56_4_a5,
     author = {Bermudo, S. and Marcantognini, S. A. M. and Mor\'an, M. D.},
     title = {Operators of {Hankel} type},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1147--1163},
     year = {2006},
     volume = {56},
     number = {4},
     mrnumber = {2280800},
     zbl = {1164.47326},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a5/}
}
TY  - JOUR
AU  - Bermudo, S.
AU  - Marcantognini, S. A. M.
AU  - Morán, M. D.
TI  - Operators of Hankel type
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 1147
EP  - 1163
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a5/
LA  - en
ID  - CMJ_2006_56_4_a5
ER  - 
%0 Journal Article
%A Bermudo, S.
%A Marcantognini, S. A. M.
%A Morán, M. D.
%T Operators of Hankel type
%J Czechoslovak Mathematical Journal
%D 2006
%P 1147-1163
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a5/
%G en
%F CMJ_2006_56_4_a5
Bermudo, S.; Marcantognini, S. A. M.; Morán, M. D. Operators of Hankel type. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1147-1163. http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a5/

[1] D. Z. Arov and L. Z. Grossman: Scattering matrices in the theory of extensions of isometric operators. Soviet Math. Dokl. 27 (1983), 518–522. | MR

[2] M. Cotlar and C. Sadosky: Prolongements des formes de Hankel généralisées et formes de Toeplitz. C. R. Acad. Sci Paris Sér. I Math. 305 (1987), 167–170. | MR

[3] M. Cotlar and C. Sadosky: Integral representations of bounded Hankel forms defined in scattering systems with a multiparametric evolution group. Operator Theory: Adv. Appl. 35 (1988), 357–375. | MR

[4] A. Dijksma, S. A. M. Marcantognini and H. S. V. de Snoo: A Schur type analyisis of the minimal unitary Hilbert space extensions of a Kreĭn space isometry whose defect subspaces are Hilbert spaces. Z. Anal. Anwendungen 13 (1994), 233–260. | DOI | MR

[5] R. G. Douglas: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17 (1966), 413–415. | DOI | MR | Zbl

[6] C. H.  Mancera and P. J. Paúl: On Pták’s generalization of Hankel operators. Czechoslovak Math. J. 51 (2001), 323–342. | DOI | MR

[7] C. H.  Mancera and P. J. Paúl: Compact and finite rank operators satisfying a Hankel type equation $T_2X = XT_1^*$. Integral Equations Operator Theory 39 (2001), 475–495. | MR

[8] M. D. Morán: On intertwining dilations. J. Math. Anal. Appl. 141 (1989), 219–234. | DOI | MR

[9] V. Pták: Factorization of Toeplitz and Hankel operators. Math. Bohem. 122 (1997), 131–140. | MR

[10] V. Pták and P. Vrbová: Operators of Toeplitz and Hankel type. Acta Sci. Math. (Szeged) 52 (1988), 117–140.

[11] V. Pták and P. Vrbová: Lifting intertwining relations. Integral Equations Operator Theory 11 (1988), 128–147. | DOI | MR