On the maximal subgroup of the sandwich semigroup of generalized circulant Boolean matrices
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1117-1129
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $n$ be a positive integer, and $C_{n} (r)$ the set of all $n\times n$ $r$-circulant matrices over the Boolean algebra $B=\lbrace 0,1\rbrace $, $G_{n}=\bigcup _{r=0}^{n-1}C_{n}(r)$. For any fixed $r$-circulant matrix $C$ ($C\ne 0$) in $G_{n}$, we define an operation “$\ast $” in $G_{n}$ as follows: $A\ast B=ACB$ for any $A,B$ in $G_{n}$, where $ACB$ is the usual product of Boolean matrices. Then $(G_{n},\ast )$ is a semigroup. We denote this semigroup by $G_{n}(C)$ and call it the sandwich semigroup of generalized circulant Boolean matrices with sandwich matrix $C$. Let $F$ be an idempotent element in $G_{n}(C)$ and $M(F)$ the maximal subgroup in $G_{n}(C)$ containing the idempotent element $F$. In this paper, the elements in $M(F)$ are characterized and an algorithm to determine all the elements in $M(F)$ is given.
Let $n$ be a positive integer, and $C_{n} (r)$ the set of all $n\times n$ $r$-circulant matrices over the Boolean algebra $B=\lbrace 0,1\rbrace $, $G_{n}=\bigcup _{r=0}^{n-1}C_{n}(r)$. For any fixed $r$-circulant matrix $C$ ($C\ne 0$) in $G_{n}$, we define an operation “$\ast $” in $G_{n}$ as follows: $A\ast B=ACB$ for any $A,B$ in $G_{n}$, where $ACB$ is the usual product of Boolean matrices. Then $(G_{n},\ast )$ is a semigroup. We denote this semigroup by $G_{n}(C)$ and call it the sandwich semigroup of generalized circulant Boolean matrices with sandwich matrix $C$. Let $F$ be an idempotent element in $G_{n}(C)$ and $M(F)$ the maximal subgroup in $G_{n}(C)$ containing the idempotent element $F$. In this paper, the elements in $M(F)$ are characterized and an algorithm to determine all the elements in $M(F)$ is given.
Classification :
06F30, 15A33, 15A36
Keywords: generalized ciculant Boolean matrix; sandwich semigroup; idempotent element; maximal subgroup
Keywords: generalized ciculant Boolean matrix; sandwich semigroup; idempotent element; maximal subgroup
@article{CMJ_2006_56_4_a3,
author = {Chen, Jinsong and Tan, Yijia},
title = {On the maximal subgroup of the sandwich semigroup of generalized circulant {Boolean} matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {1117--1129},
year = {2006},
volume = {56},
number = {4},
mrnumber = {2280798},
zbl = {1164.15323},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a3/}
}
TY - JOUR AU - Chen, Jinsong AU - Tan, Yijia TI - On the maximal subgroup of the sandwich semigroup of generalized circulant Boolean matrices JO - Czechoslovak Mathematical Journal PY - 2006 SP - 1117 EP - 1129 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a3/ LA - en ID - CMJ_2006_56_4_a3 ER -
Chen, Jinsong; Tan, Yijia. On the maximal subgroup of the sandwich semigroup of generalized circulant Boolean matrices. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1117-1129. http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a3/