A note on the diophantine equation $x^2+b^Y=c^z$
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1109-1116 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $a$, $b$, $c$, $r$ be positive integers such that $a^{2}+b^{2}=c^{r}$, $\min (a,b,c,r)>1$, $\gcd (a,b)=1, a$ is even and $r$ is odd. In this paper we prove that if $b\equiv 3\hspace{4.44443pt}(\@mod \; 4)$ and either $b$ or $c$ is an odd prime power, then the equation $x^{2}+b^{y}=c^{z}$ has only the positive integer solution $(x,y,z)=(a,2,r)$ with $\min (y,z)>1$.
Let $a$, $b$, $c$, $r$ be positive integers such that $a^{2}+b^{2}=c^{r}$, $\min (a,b,c,r)>1$, $\gcd (a,b)=1, a$ is even and $r$ is odd. In this paper we prove that if $b\equiv 3\hspace{4.44443pt}(\@mod \; 4)$ and either $b$ or $c$ is an odd prime power, then the equation $x^{2}+b^{y}=c^{z}$ has only the positive integer solution $(x,y,z)=(a,2,r)$ with $\min (y,z)>1$.
Classification : 11D61
Keywords: exponential diophantine equation; Lucas number; positive divisor
@article{CMJ_2006_56_4_a2,
     author = {Le, Maohua},
     title = {A note on the diophantine equation $x^2+b^Y=c^z$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1109--1116},
     year = {2006},
     volume = {56},
     number = {4},
     mrnumber = {2280797},
     zbl = {1164.11319},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a2/}
}
TY  - JOUR
AU  - Le, Maohua
TI  - A note on the diophantine equation $x^2+b^Y=c^z$
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 1109
EP  - 1116
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a2/
LA  - en
ID  - CMJ_2006_56_4_a2
ER  - 
%0 Journal Article
%A Le, Maohua
%T A note on the diophantine equation $x^2+b^Y=c^z$
%J Czechoslovak Mathematical Journal
%D 2006
%P 1109-1116
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a2/
%G en
%F CMJ_2006_56_4_a2
Le, Maohua. A note on the diophantine equation $x^2+b^Y=c^z$. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1109-1116. http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a2/

[1] Y. Bilu, G. Hanrot and P. Voutier (with an appendix by M. Mignotte): Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539 (2001), 75–122. | MR

[2] Y. Bugeaud: On some exponential diophantine equations. Monatsh. Math. 132 (2001), 93–97. | DOI | MR | Zbl

[3] Z.-F. Cao and X.-L. Dong: The diophantine equation $a^{2}+b^{y}=c^{z}$. Proc. Japan Acad. 77A (2001), 1–4. | MR

[4] Z.-F. Cao, X.-L. Dong and Z. Li: A new conjecture concerning the diophantine equation $x^{2}+b^{y}=c^{z}$. Proc. Japan Acad. 78A (2002), 199–202. | MR

[5] L. Jeśmanowicz: Several remarks on Pythagorean number. Wiadom. Mat. 1 (1955/1956), 196–202. (Polish) | MR

[6] C. Ko: On the diophantine equation $x^{2}=y^{n}+1, xy\ne 0$. Sci.Sin. 14 (1964), 457–460. | MR

[7] M.-H. Le: A note on Jeśmanowicz’ conjecture. Colloq. Math. 64 (1995), 47–51. | MR | Zbl

[8] L. J. Mordell: Diophantine Equations. Academic Press, London, 1969. | MR | Zbl

[9] T. Nagell: Sur I’impossibilité de quelques equation á deux indéterminées. Norsk Matem. Forenings Skrifter 13 (1921), 65–82.

[10] N. Terai: The diophantine equation $x^{2}+q^{m}=p^{n}$. Acta Arith. 63 (1993), 351–358. | DOI | MR

[11] P. Voutier: Primitive divisors of Lucas and Lehmer sequences. Math. Comp. 64 (1995), 869–888. | DOI | MR | Zbl