Keywords: exponential diophantine equation; Lucas number; positive divisor
@article{CMJ_2006_56_4_a2,
author = {Le, Maohua},
title = {A note on the diophantine equation $x^2+b^Y=c^z$},
journal = {Czechoslovak Mathematical Journal},
pages = {1109--1116},
year = {2006},
volume = {56},
number = {4},
mrnumber = {2280797},
zbl = {1164.11319},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a2/}
}
Le, Maohua. A note on the diophantine equation $x^2+b^Y=c^z$. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1109-1116. http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a2/
[1] Y. Bilu, G. Hanrot and P. Voutier (with an appendix by M. Mignotte): Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539 (2001), 75–122. | MR
[2] Y. Bugeaud: On some exponential diophantine equations. Monatsh. Math. 132 (2001), 93–97. | DOI | MR | Zbl
[3] Z.-F. Cao and X.-L. Dong: The diophantine equation $a^{2}+b^{y}=c^{z}$. Proc. Japan Acad. 77A (2001), 1–4. | MR
[4] Z.-F. Cao, X.-L. Dong and Z. Li: A new conjecture concerning the diophantine equation $x^{2}+b^{y}=c^{z}$. Proc. Japan Acad. 78A (2002), 199–202. | MR
[5] L. Jeśmanowicz: Several remarks on Pythagorean number. Wiadom. Mat. 1 (1955/1956), 196–202. (Polish) | MR
[6] C. Ko: On the diophantine equation $x^{2}=y^{n}+1, xy\ne 0$. Sci.Sin. 14 (1964), 457–460. | MR
[7] M.-H. Le: A note on Jeśmanowicz’ conjecture. Colloq. Math. 64 (1995), 47–51. | MR | Zbl
[8] L. J. Mordell: Diophantine Equations. Academic Press, London, 1969. | MR | Zbl
[9] T. Nagell: Sur I’impossibilité de quelques equation á deux indéterminées. Norsk Matem. Forenings Skrifter 13 (1921), 65–82.
[10] N. Terai: The diophantine equation $x^{2}+q^{m}=p^{n}$. Acta Arith. 63 (1993), 351–358. | DOI | MR
[11] P. Voutier: Primitive divisors of Lucas and Lehmer sequences. Math. Comp. 64 (1995), 869–888. | DOI | MR | Zbl