Keywords: cohomology of nilpotent Lie algebras; graded filiform Lie algebras; variety of laws of filiform Lie algebras; irreducible component; algorithm
@article{CMJ_2006_56_4_a14,
author = {Echarte, F. J. and M\'arquez, M. C. and N\'u\~nez, J.},
title = {A constructive method to determine the variety of filiform {Lie} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {1281--1299},
year = {2006},
volume = {56},
number = {4},
mrnumber = {2280809},
zbl = {1164.17012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a14/}
}
TY - JOUR AU - Echarte, F. J. AU - Márquez, M. C. AU - Núñez, J. TI - A constructive method to determine the variety of filiform Lie algebras JO - Czechoslovak Mathematical Journal PY - 2006 SP - 1281 EP - 1299 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a14/ LA - en ID - CMJ_2006_56_4_a14 ER -
Echarte, F. J.; Márquez, M. C.; Núñez, J. A constructive method to determine the variety of filiform Lie algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1281-1299. http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a14/
[1] M. Vergne: Cohomologie des algèbres de Lie nilpotentes. Application a l’étude de la variété des algèbres de Lie nilpotentes. Bull. Soc. Math. France 98 (1970), 81–116. | MR | Zbl
[2] N. Blackburn: On a special class of $p$-groups. Acta Math. 100 (1958), 45–92. | DOI | MR | Zbl
[3] L. Boza Prieto, E. M. Fedriani Martel, and J. Núñez Valdés: A new method for classifying complex filiform Lie algebras. Applied Mathematics and Computation 121 (2001), 169–175. | DOI | MR
[4] M. Goze, Y. B. Khakimdjanov: Nilpotent and Solvable Lie Algebras. Handbook of Algebra, Vol. 2. M. Hazewinkel (ed.), Elsevier, 2000. | DOI
[5] Y. B. Khakimdjanov: Varieties of Lie Algebras Laws. Handbook of Algebra, Vol. 2. M. Hazewinkel (ed.), Elsevier, 2000.
[6] M. Goze, Y. B. Khakimdjanov: Nilpotent Lie Algebras. Kluwer Academic Publishers, , 1996. | MR
[7] Y. B. Khakimdjanov: Variété des lois d’algèbres de Lie nilpotentes. Geometriae Dedicata 40 (1991), 269–295. | MR