Keywords: hyponormal; totally $\ast $-paranormal; hypercyclic; operators
@article{CMJ_2006_56_4_a13,
author = {Ko, Eungil and Nam, Hae-Won and Yang, Youngoh},
title = {On totally $\ast$-paranormal operators},
journal = {Czechoslovak Mathematical Journal},
pages = {1265--1280},
year = {2006},
volume = {56},
number = {4},
mrnumber = {2280808},
zbl = {1164.47319},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a13/}
}
Ko, Eungil; Nam, Hae-Won; Yang, Youngoh. On totally $\ast$-paranormal operators. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1265-1280. http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a13/
[1] C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu: Approximation of Hilbert space operators, Volume II. Research Notes in Mathematics 102, Pitman, Boston, 1984. | MR
[2] S. C. Arora and J. K. Thukral: On a class of operators. Glasnik Math. 21 (1986), 381–386. | MR
[3] S. K. Berberian: An extension of Weyl’s theorem to a class of not necessarily normal operators. Michigan Math J. 16 (1969), 273–279. | DOI | MR | Zbl
[4] S. K. Berberian: The Weyl’s spectrum of an operator. Indiana Univ. Math. J. 20 (1970), 529–544. | DOI | MR
[5] S. W. Brown: Hyponormal operators with thick spectrum have invariant subspaces. Ann. of Math. 125 (1987), 93–103. | DOI | MR
[6] L. A. Coburn: Weyl’s theorem for non-normal operators. Michigan Math. J. 13 (1966), 285–288. | DOI | MR
[7] I. Colojoara and C. Foias: Theory of generalized spectral operators. Gordon and Breach, New York, 1968. | MR
[8] J. B. Conway: Subnormal operators. Pitman, London, 1981. | MR | Zbl
[9] S. Djordjevic, I. Jeon and E. Ko: Weyl’s theorem through local spectral theory. Glasgow Math. J. 44 (2002), 323–327. | MR
[10] B. P. Duggal: On the spectrum of $p$-hyponormal operators. Acta Sci. Math. (Szeged) 63 (1997), 623–637. | MR | Zbl
[11] J. Eschmeier: Invariant subspaces for subscalar operators. Arch. Math. 52 (1989), 562–570. | DOI | MR | Zbl
[12] P. R. Halmos: A Hilbert space problem book. Springer-Verlag, 1982. | MR | Zbl
[13] R. E. Harte: Invertibility and singularity. Dekker, New York, 1988. | Zbl
[14] C. Kitai: Invariant closed sets for linear operators. Ph.D. Thesis, Univ. of Toronto, 1982.
[15] E. Ko: Algebraic and triangular $n$-hyponormal operators. Proc. Amer. Math. Soc. 123 (1995), 3473–3481. | MR | Zbl
[16] K. B. Laursen: Operators with finite ascent. Pacific J. Math. 152 (1992), 323–336. | DOI | MR | Zbl
[17] K. B. Laursen: Essential spectra through local spectral theory. Proc. Amer. Math. Soc. 125 (1997), 1425–1434. | DOI | MR | Zbl
[18] K. K. Oberai: On the Weyl spectrum. Illinois J. Math. 18 (1974), 208–212. | DOI | MR | Zbl
[19] K. K. Oberai: On the Weyl spectrum (II). Illinois J. Math. 21 (1977), 84–90. | DOI | MR | Zbl
[20] M. Putinar: Hyponormal operators are subscalar. J. Operator Th. 12 (1984), 385–395. | MR | Zbl
[21] R. Lange: Biquasitriangularity and spectral continuity. Glasgow Math. J. 26 (1985), 177–180. | DOI | MR | Zbl
[22] B. L. Wadhwa: Spectral, $M$-hyponormal and decomposable operators. Ph.D. thesis, Indiana Univ., 1971.
[23] D. Xia: Spectral theory of hyponormal operators. Operator Theory 10, Birkhäuser-Verlag, 1983. | MR | Zbl