Nodal solutions for a second-order $m$-point boundary value problem
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1243-1263 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the existence of nodal solutions of the $m$-point boundary value problem \[ u^{\prime \prime }+ f(u)=0, \quad 00$ and $0\sum \nolimits ^{m-2}_{i=1} \alpha _i 1$. We give conditions on the ratio $f(s)/s$ at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques.
We study the existence of nodal solutions of the $m$-point boundary value problem \[ u^{\prime \prime }+ f(u)=0, \quad 01, u^{\prime }(0)=0, \quad u(1)=\sum ^{m-2}_{i=1} \alpha _i u(\eta _i) \] where $\eta _i\in \mathbb{Q}$ $(i=1, 2, \cdots , m-2)$ with $0\eta _1\eta _2\cdots \eta _{m-2}1$, and $\alpha _i\in \mathbb{R}$ $(i=1, 2, \cdots , m-2)$ with $\alpha _i>0$ and $0\sum \nolimits ^{m-2}_{i=1} \alpha _i 1$. We give conditions on the ratio $f(s)/s$ at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques.
Classification : 34B10, 34C23, 34G20, 34L20, 47J15, 47N20
Keywords: multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems
@article{CMJ_2006_56_4_a12,
     author = {Ma, Ruyun},
     title = {Nodal solutions for a second-order $m$-point boundary value problem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1243--1263},
     year = {2006},
     volume = {56},
     number = {4},
     mrnumber = {2280807},
     zbl = {1164.34329},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a12/}
}
TY  - JOUR
AU  - Ma, Ruyun
TI  - Nodal solutions for a second-order $m$-point boundary value problem
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 1243
EP  - 1263
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a12/
LA  - en
ID  - CMJ_2006_56_4_a12
ER  - 
%0 Journal Article
%A Ma, Ruyun
%T Nodal solutions for a second-order $m$-point boundary value problem
%J Czechoslovak Mathematical Journal
%D 2006
%P 1243-1263
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a12/
%G en
%F CMJ_2006_56_4_a12
Ma, Ruyun. Nodal solutions for a second-order $m$-point boundary value problem. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1243-1263. http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a12/

[1] A.  Ambrosetti, P.  Hess: Positive solutions of asymptotically linear elliptic eigenvalue problems. J.  Math. Anal. Appl. 73 (1980), 411–422. | DOI | MR

[2] A.  Castro, P.  Drábek, J. M.  Neuberger: A sign-changing solution for a superlinear Dirichlet problem.  II. Proceedings of the Fifth Mississippi State Conference on Differential Equations and Computational Simulations (Mississippi State, MS, 2001), pp. 101–107. | MR

[3] L. H. Erbe, H.  Wang: On the existence of positive solutions of ordinary differential equations. Proc. Amer. Math. Soc. 120 (1994), 743–748. | DOI | MR

[4] R.  Ma: Existence of positive solutions for superlinear semipositone $m$-point boundary-value problems. Proc. Edin. Math. Soc. 46 (2003), 279–292. | DOI | MR | Zbl

[5] R.  Ma, B.  Thompson: Nodal solutions for nonlinear eigenvalue problems. Nonlinear Analysis, Theory Methods Appl. 59 (2004), 717–718. | MR

[6] Y.  Naito, S.  Tanaka: On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations. Nonlinear Analysis TMA 56 (2004), 919–935. | DOI | MR

[7] P. H. Rabinowitz: Some global results for nonlinear eigenvalue problems. J.  Funct. Anal. 7 (1971), 487–513. | DOI | MR | Zbl

[8] I.  Rachůnková: On four-point boundary value problem without growth conditions. Czechoslovak Math.  J. 49 (1999), 241–248. | DOI | MR

[9] B. Ruf, P. N.  Srikanth: Multiplicity results for ODEs with nonlinearities crossing all but a finite number of eigenvalues. Nonlinear Analysis TMA 10 (1986), 157–163. | DOI | MR

[10] B. P.  Rynne: Global bifurcation for $2m$th-order boundary value problems and infinity many solutions of superlinear problems. J.  Differential Equations 188 (2003), 461–472. | DOI | MR

[11] J. R.  Webb: Positive solutions of some three-point boundary value problems via fixed point index theory. Nonlinear Analysis 47 (2001), 4319–4332. | DOI | MR | Zbl

[12] X. Xu: Multiple sign-changing solutions for some $m$-point boundary value problems. Electronic Journal of Differential Equations 89 (2004), 1–14. | MR | Zbl