Weak homogeneity and Pierce’s theorem for $MV$-algebras
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1215-1227
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we prove a theorem on weak homogeneity of $MV$-algebras which generalizes a known result on weak homogeneity of Boolean algebras. Further, we consider a homogeneity condition for $MV$-algebras which is defined by means of an increasing cardinal property.
In this paper we prove a theorem on weak homogeneity of $MV$-algebras which generalizes a known result on weak homogeneity of Boolean algebras. Further, we consider a homogeneity condition for $MV$-algebras which is defined by means of an increasing cardinal property.
Classification : 06D35
Keywords: $MV$-algebra; weak homogeneity; internal direct product decomposition
@article{CMJ_2006_56_4_a10,
     author = {Jakub{\'\i}k, J\'an},
     title = {Weak homogeneity and {Pierce{\textquoteright}s} theorem for $MV$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1215--1227},
     year = {2006},
     volume = {56},
     number = {4},
     mrnumber = {2280805},
     zbl = {1164.06315},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a10/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Weak homogeneity and Pierce’s theorem for $MV$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 1215
EP  - 1227
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a10/
LA  - en
ID  - CMJ_2006_56_4_a10
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Weak homogeneity and Pierce’s theorem for $MV$-algebras
%J Czechoslovak Mathematical Journal
%D 2006
%P 1215-1227
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a10/
%G en
%F CMJ_2006_56_4_a10
Jakubík, Ján. Weak homogeneity and Pierce’s theorem for $MV$-algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1215-1227. http://geodesic.mathdoc.fr/item/CMJ_2006_56_4_a10/

[1] R. Cignoli, I. M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. | MR

[2] J. Jakubík: Konvexe Ketten in $\ell $-Gruppen. Časopis pěst. mat. 84 (1959), 53–63. | MR

[3] J. Jakubík: Cardinal properties of lattice ordered groups. Fundamenta Math. 74 (1972), 85–98. | DOI | MR

[4] J. Jakubík: Direct product decomposition of MV-algebras. Czechoslovak Math. J. 44 (1994), 725–739. | MR

[5] J. Jakubík: Generalized cardinal properties of lattices and lattice ordered groups. Czechoslovak Math. J 54 (2004), 1035–1053. | DOI | MR

[6] J. Jakubík: On a homogeneity condition for $MV$-algebras. Czechoslovak Math. J 56 (2006), 79–97. | DOI | MR

[7] R. S. Pierce: A note on complete Boolean algebras. Proc. Amer. Math. Soc. 9 (1958), 892–896. | DOI | MR

[8] R. S. Pierce: Some questions about complete Boolean algebras. Proc. Sympos. Pure Math. 2 (1961), 129–140. | MR | Zbl

[9] R. Sikorski: Boolean Algebras. Second Edition, Springer Verlag, Berlin, 1964. | MR | Zbl