Noninvertibility preservers on Banach algebras
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 919-921
It is proved that a linear surjection $\Phi \:\mathcal A\rightarrow \mathcal B$, which preserves noninvertibility between semisimple, unital, complex Banach algebras, is automatically injective.
It is proved that a linear surjection $\Phi \:\mathcal A\rightarrow \mathcal B$, which preserves noninvertibility between semisimple, unital, complex Banach algebras, is automatically injective.
Classification :
46H05, 46H10, 47B48, 47B49
Keywords: linear preserver; noninvertible element; semisimple Banach algebra; socle
Keywords: linear preserver; noninvertible element; semisimple Banach algebra; socle
@article{CMJ_2006_56_3_a9,
author = {Kuzma, Bojan},
title = {Noninvertibility preservers on {Banach} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {919--921},
year = {2006},
volume = {56},
number = {3},
mrnumber = {2261663},
zbl = {1164.46337},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a9/}
}
Kuzma, Bojan. Noninvertibility preservers on Banach algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 919-921. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a9/
[1] B. Aupetit: A Primer on Spectral Theory. Springer-Verlag, New York, 1991. | MR | Zbl
[2] B. Aupetit, H. du T. Mouton: Spectrum-preserving linear mappings in Banach algebras. Stud. Math. 109 (1994), 91–100. | DOI | MR
[3] M. Brešar, A. Fošner, and P. Šemrl: A note on invertibility preservers on Banach algebras. Proc. Amer. Math. Soc. 131 (2003), 3833–3837. | DOI | MR
[4] A. R. Sourour: Invertibility preserving maps on $L(X)$. Trans. Amer. Math. Soc. 348 (1996), 13–30. | DOI | MR