Noninvertibility preservers on Banach algebras
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 919-921
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is proved that a linear surjection $\Phi \:\mathcal A\rightarrow \mathcal B$, which preserves noninvertibility between semisimple, unital, complex Banach algebras, is automatically injective.
It is proved that a linear surjection $\Phi \:\mathcal A\rightarrow \mathcal B$, which preserves noninvertibility between semisimple, unital, complex Banach algebras, is automatically injective.
Classification : 46H05, 46H10, 47B48, 47B49
Keywords: linear preserver; noninvertible element; semisimple Banach algebra; socle
@article{CMJ_2006_56_3_a9,
     author = {Kuzma, Bojan},
     title = {Noninvertibility preservers on {Banach} algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {919--921},
     year = {2006},
     volume = {56},
     number = {3},
     mrnumber = {2261663},
     zbl = {1164.46337},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a9/}
}
TY  - JOUR
AU  - Kuzma, Bojan
TI  - Noninvertibility preservers on Banach algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 919
EP  - 921
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a9/
LA  - en
ID  - CMJ_2006_56_3_a9
ER  - 
%0 Journal Article
%A Kuzma, Bojan
%T Noninvertibility preservers on Banach algebras
%J Czechoslovak Mathematical Journal
%D 2006
%P 919-921
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a9/
%G en
%F CMJ_2006_56_3_a9
Kuzma, Bojan. Noninvertibility preservers on Banach algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 919-921. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a9/

[1] B. Aupetit: A Primer on Spectral Theory. Springer-Verlag, New York, 1991. | MR | Zbl

[2] B. Aupetit, H. du T. Mouton: Spectrum-preserving linear mappings in Banach algebras. Stud. Math. 109 (1994), 91–100. | DOI | MR

[3] M.  Brešar, A.  Fošner, and P.  Šemrl: A note on invertibility preservers on Banach algebras. Proc. Amer. Math. Soc. 131 (2003), 3833–3837. | DOI | MR

[4] A. R. Sourour: Invertibility preserving maps on  $L(X)$. Trans. Amer. Math. Soc. 348 (1996), 13–30. | DOI | MR