Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 903-918 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $A$ be a uniformly closed and locally m-convex $\Phi $-algebra. We obtain internal conditions on $A$ stated in terms of its closed ideals for $A$ to be isomorphic and homeomorphic to $C_k(X)$, the $\Phi $-algebra of all the real continuous functions on a normal topological space $X$ endowed with the compact convergence topology.
Let $A$ be a uniformly closed and locally m-convex $\Phi $-algebra. We obtain internal conditions on $A$ stated in terms of its closed ideals for $A$ to be isomorphic and homeomorphic to $C_k(X)$, the $\Phi $-algebra of all the real continuous functions on a normal topological space $X$ endowed with the compact convergence topology.
Classification : 06B30, 46H05, 46H15, 54H12, 54H13
Keywords: locally m-convex algebra; $\Phi $-algebra; compact convergence topology
@article{CMJ_2006_56_3_a8,
     author = {Montalvo, F. and Pulgar{\'\i}n, A. A. and Requejo, B.},
     title = {Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {903--918},
     year = {2006},
     volume = {56},
     number = {3},
     mrnumber = {2261662},
     zbl = {1164.46339},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a8/}
}
TY  - JOUR
AU  - Montalvo, F.
AU  - Pulgarín, A. A.
AU  - Requejo, B.
TI  - Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 903
EP  - 918
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a8/
LA  - en
ID  - CMJ_2006_56_3_a8
ER  - 
%0 Journal Article
%A Montalvo, F.
%A Pulgarín, A. A.
%A Requejo, B.
%T Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$
%J Czechoslovak Mathematical Journal
%D 2006
%P 903-918
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a8/
%G en
%F CMJ_2006_56_3_a8
Montalvo, F.; Pulgarín, A. A.; Requejo, B. Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 903-918. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a8/

[1] F. W.  Anderson: Approximation in systems of real-valued continuous functions. Trans. Am. Math. Soc. 103 (1962), 249–271. | DOI | MR | Zbl

[2] R.  Bkouche: Couples spectraux et faisceaux associés. Applications aux anneaux de fonctions. Bull. Soc. Math. France 98 (1970), 253–295. | DOI | MR | Zbl

[3] W. A. Feldman, J. F.  Porter: The order topology for function lattices and realcompactness. Internat. J. Math. Math. Sci. 4 (1981), 289–304. | DOI | MR

[4] I. M.  Gelfand: Normierte ringe. Rec. Math. Moscou, n. Ser. 9 (1941), 3–24. | MR | Zbl

[5] L.  Gillman, M.  Jerison: Rings of Continuous Functions. Grad. Texts in Math. Vol. 43. Springer-Verlag, New York, 1960. | MR

[6] A. W. Hager: On inverse-closed subalgebras of  $C(X)$. Proc. London Math. Soc. 19 (1969), 233–257. | MR | Zbl

[7] M. Henriksen: Unsolved problems on algebraic aspects of  $C(X)$. In: Rings of Continuous Functions. Lecture Notes in Pure and Appl. Math. Vol. 95, M.  Dekker, New York, 1985, pp. 195–202. | MR | Zbl

[8] M. Henriksen, D. J.  Johnson: On the structure of a class of Archimedean lattice-ordered algebras. Fundam. Math. 50 (1961), 73–94. | DOI | MR

[9] C. B.  Huijsmans, B. de Pagter: Ideal theory in $f$-algebras. Trans. Am. Math. Soc. 269 (1982), 225–245. | MR

[10] D. J. Johnson: A structure theory for a class of lattice-ordered rings. Acta Math. 104 (1960), 163–215. | DOI | MR | Zbl

[11] F.  Montalvo, A.  Pulgarín, B. Requejo: Order topologies on $l$-algebras. Topology Appl. 137 (2004), 225–236. | DOI | MR

[12] P. D. Morris, D. E.  Wulbert: Functional representation of topological algebras. Pac. J. Math. 22 (1967), 323–337. | MR

[13] J.  Muñoz, J. M.  Ortega: Sobre las álgebras localmente convexas. Collect. Math. 20 (1969), 127–149.

[14] D.  Plank: Closed $l$-ideals in a class of lattice-ordered algebras. Ill. J. Math. 15 (1971), 515–524. | MR

[15] A.  Pulgarín: A characterization of  $C_k(X)$ as a Fréchet $f$-algebra. Acta Math. Hung. 88 (2000), 133–138. | DOI | Zbl

[16] B. Requejo: A characterization of the topology of compact convergence on  $C(X)$. Topology Appl. 77 (1997), 213–219. | DOI | MR

[17] B. Requejo: Localización Topológica. Publ. Dpto. Mat. Unex, Vol. 32, Badajoz, 1995. | MR

[18] H. H.  Schaefer: Topological Vector Spaces. Grad. Text in Math. Vol. 3. Springer-Verlag, New York, 1971. | MR

[19] H.  Tietze: Über Funktionen, die auf einer abgeschlossenen Menge stetig sind. J. für Math. 145 (1914), 9–14.

[20] S.  Warner: The topology of compact convergence on continuous function spaces. Duke Math. J. 25 (1958), 265–282. | MR | Zbl