Keywords: signpost system; path; connected graph; tree; spanning tree
@article{CMJ_2006_56_3_a6,
author = {Nebesk\'y, Ladislav},
title = {Signpost systems and spanning trees of graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {885--893},
year = {2006},
volume = {56},
number = {3},
mrnumber = {2261660},
zbl = {1164.05392},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a6/}
}
Nebeský, Ladislav. Signpost systems and spanning trees of graphs. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 885-893. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a6/
[1] G. Chartrand, L. Lesniak: Graphs & Digraphs. Third edition. Chapman & Hall, London, 1996. | MR
[2] H. M. Mulder, L. Nebeský: Modular and median signpost systems and their underlying graphs. Discussiones Mathematicae Graph Theory 23 (2003), 309–324. | DOI | MR
[3] L. Nebeský: Geodesics and steps in a connected graph. Czechoslovak Math. J. 47(122) (1997), 149–161. | DOI | MR
[4] L. Nebeský: An axiomatic approach to metric properties of connected graphs. Czechoslovak Math. J. 50(125) (2000), 3–14. | DOI | MR
[5] L. Nebeský: A tree as a finite nonempty set with a binary operation. Mathematica Bohemica 125 (2000), 455–458. | MR
[6] L. Nebeský: On properties of a graph that depend on its distance function. Czechoslovak Math. J. 54(129) (2004), 445–456. | DOI | MR
[7] L. Nebeský: Signpost systems and connected graphs. Czechoslovak Math. J. 55(130) (2005), 283–293. | DOI | MR