On the inertia sets of some symmetric sign patterns
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 875-883
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A matrix whose entries consist of elements from the set $\lbrace +,-,0\rbrace $ is a sign pattern matrix. Using a linear algebra theoretical approach we generalize of some recent results due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.
A matrix whose entries consist of elements from the set $\lbrace +,-,0\rbrace $ is a sign pattern matrix. Using a linear algebra theoretical approach we generalize of some recent results due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.
Classification : 15A18, 15A36, 15A48
Keywords: inertia; sign pattern matrix; tridiagonal matrix
@article{CMJ_2006_56_3_a5,
     author = {Fonseca, C. M. da},
     title = {On the inertia sets of some symmetric sign patterns},
     journal = {Czechoslovak Mathematical Journal},
     pages = {875--883},
     year = {2006},
     volume = {56},
     number = {3},
     mrnumber = {2261659},
     zbl = {1164.15318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a5/}
}
TY  - JOUR
AU  - Fonseca, C. M. da
TI  - On the inertia sets of some symmetric sign patterns
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 875
EP  - 883
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a5/
LA  - en
ID  - CMJ_2006_56_3_a5
ER  - 
%0 Journal Article
%A Fonseca, C. M. da
%T On the inertia sets of some symmetric sign patterns
%J Czechoslovak Mathematical Journal
%D 2006
%P 875-883
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a5/
%G en
%F CMJ_2006_56_3_a5
Fonseca, C. M. da. On the inertia sets of some symmetric sign patterns. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 875-883. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a5/

[1] B. E. Cain and E. Marques de Sá: The inertia of Hermitian matrices with a prescribed $2\times 2$ block decomposition. Linear and Multilinear Algebra 31 (1992), 119–130. | DOI | MR

[2] B. E. Cain and E. Marques de Sá: The inertia of certain skew-triangular block matrices. Linear Algebra Appl. 160 (1992), 75–85. | MR

[3] C. Eschenbach and C. R. Johnson: A combinatorial converse to the Perron-Frobenius theorem. Linear Algebra Appl. 136 (1990), 173–180. | MR

[4] C. Eschenbach and C. R. Johnson: Sign patterns that require real, nonreal or pure imaginary eigenvalues. Linear and Multilinear Algebra 29 (1991), 299–311. | DOI | MR

[5] Y. Gao and Y. Shao: The inertia set of nonnegative symmetric sign pattern with zero diagonal. Czechoslovak Math. J. 53 (2003), 925–934. | DOI | MR

[6] F. J. Hall and Z. Li: Inertia sets of symmetric sign pattern matrices. Numer. Math. J. Chinese Univ. (English Ser.) 10 (2001), 226–240. | MR

[7] F. J. Hall, Z. Li and Di Wang: Symmetric sign pattern matrices that require unique inertia. Linear Algebra Appl. 338 (2001), 153–169. | MR

[8] R. A. Horn and C. R. Johnson: Matrix Analysis, Cambridge University Press, Cambridge. 1985. | MR

[9] C. Jeffries and C. R. Johnson: Some sign patterns that preclude matrix stability. SIAM J. Matrix Anal. Appl. 9 (1988), 19–25. | MR