Keywords: inertia; sign pattern matrix; tridiagonal matrix
@article{CMJ_2006_56_3_a5,
author = {Fonseca, C. M. da},
title = {On the inertia sets of some symmetric sign patterns},
journal = {Czechoslovak Mathematical Journal},
pages = {875--883},
year = {2006},
volume = {56},
number = {3},
mrnumber = {2261659},
zbl = {1164.15318},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a5/}
}
Fonseca, C. M. da. On the inertia sets of some symmetric sign patterns. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 875-883. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a5/
[1] B. E. Cain and E. Marques de Sá: The inertia of Hermitian matrices with a prescribed $2\times 2$ block decomposition. Linear and Multilinear Algebra 31 (1992), 119–130. | DOI | MR
[2] B. E. Cain and E. Marques de Sá: The inertia of certain skew-triangular block matrices. Linear Algebra Appl. 160 (1992), 75–85. | MR
[3] C. Eschenbach and C. R. Johnson: A combinatorial converse to the Perron-Frobenius theorem. Linear Algebra Appl. 136 (1990), 173–180. | MR
[4] C. Eschenbach and C. R. Johnson: Sign patterns that require real, nonreal or pure imaginary eigenvalues. Linear and Multilinear Algebra 29 (1991), 299–311. | DOI | MR
[5] Y. Gao and Y. Shao: The inertia set of nonnegative symmetric sign pattern with zero diagonal. Czechoslovak Math. J. 53 (2003), 925–934. | DOI | MR
[6] F. J. Hall and Z. Li: Inertia sets of symmetric sign pattern matrices. Numer. Math. J. Chinese Univ. (English Ser.) 10 (2001), 226–240. | MR
[7] F. J. Hall, Z. Li and Di Wang: Symmetric sign pattern matrices that require unique inertia. Linear Algebra Appl. 338 (2001), 153–169. | MR
[8] R. A. Horn and C. R. Johnson: Matrix Analysis, Cambridge University Press, Cambridge. 1985. | MR
[9] C. Jeffries and C. R. Johnson: Some sign patterns that preclude matrix stability. SIAM J. Matrix Anal. Appl. 9 (1988), 19–25. | MR