Traceless component of the conformal curvature tensor in Kähler manifold
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 857-874
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the traceless component of the conformal curvature tensor defined by (2.1) in Kähler manifolds of dimension $\ge 4$, and show that the traceless component is invariant under concircular change. In particular, we determine Kähler manifolds with vanishing traceless component and improve some theorems (for example, [4, pp. 313–317]) concerning the conformal curvature tensor and the spectrum of the Laplacian acting on $p$ $(0\le p\le 2)$-forms on the manifold by using the traceless component.
We investigate the traceless component of the conformal curvature tensor defined by (2.1) in Kähler manifolds of dimension $\ge 4$, and show that the traceless component is invariant under concircular change. In particular, we determine Kähler manifolds with vanishing traceless component and improve some theorems (for example, [4, pp. 313–317]) concerning the conformal curvature tensor and the spectrum of the Laplacian acting on $p$ $(0\le p\le 2)$-forms on the manifold by using the traceless component.
Classification : 53C55, 58J50
Keywords: Kähler manifold; conformal tensor field; trace decomposition; concircular transformation; spectrum
@article{CMJ_2006_56_3_a4,
     author = {Funabashi, Shoichi and Kim, Hyang Sook and Kim, Young-Mi and Pak, Jin Suk},
     title = {Traceless component of the conformal curvature tensor in {K\"ahler} manifold},
     journal = {Czechoslovak Mathematical Journal},
     pages = {857--874},
     year = {2006},
     volume = {56},
     number = {3},
     mrnumber = {2261658},
     zbl = {1164.53382},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a4/}
}
TY  - JOUR
AU  - Funabashi, Shoichi
AU  - Kim, Hyang Sook
AU  - Kim, Young-Mi
AU  - Pak, Jin Suk
TI  - Traceless component of the conformal curvature tensor in Kähler manifold
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 857
EP  - 874
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a4/
LA  - en
ID  - CMJ_2006_56_3_a4
ER  - 
%0 Journal Article
%A Funabashi, Shoichi
%A Kim, Hyang Sook
%A Kim, Young-Mi
%A Pak, Jin Suk
%T Traceless component of the conformal curvature tensor in Kähler manifold
%J Czechoslovak Mathematical Journal
%D 2006
%P 857-874
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a4/
%G en
%F CMJ_2006_56_3_a4
Funabashi, Shoichi; Kim, Hyang Sook; Kim, Young-Mi; Pak, Jin Suk. Traceless component of the conformal curvature tensor in Kähler manifold. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 857-874. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a4/

[1] M. Berger, P. Gauduchon et E. Mazet: Le Spectre d’une Variété Riemannienne. Lecture Notes in Mathematics 194, Springer-Verlag, , 1971. | MR

[2] H. Kitahara, K. Matsuo and J. S. Pak: A conformal curvature tensor field on hermitian manifolds; Appendium. J. Korean Math. Soc.; Bull. Korean Math. Soc. 27 (1990), 7–17; 27–30. | MR

[3] D. Krupka: The trace decomposition problem. Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry 36 (1995), 303–315. | MR | Zbl

[4] J. S. Pak, K.-H. Cho and J.-H. Kwon: Conformal curvature tensor field and spectrum of the Laplacian in Kaehlerian manifolds. Bull. Korean Math. Soc. 32 (1995), 309–319. | MR

[5] V. K. Patodi: Curvature and the fundamental solution of the heat operator. J. Indian Math. Soc. 34 (1970), 269–285. | MR

[6] S. Tachibana: Riemannian Geometry. Asakura Shoten, Tokyo, 1967. (Japanese)

[7] S. Tanno: Eigenvalues of the Laplacian of Riemannian manifolds. Tôhoku Math. J. 25 (1973), 391–403. | DOI | MR | Zbl

[8] Gr. Tsagas: On the spectrum of the Laplace operator for the exterior 2-forms. Tensor N. S. 33 (1979), 94–96. | MR | Zbl

[9] S. Yamaguchi and G. Chuman: Eigenvalues of the Laplacian of Sasakian manifolds. TRU Math. 15 (1979), 31–41. | MR

[10] K. Yano: Differential Geometry on complex and almost complex spaces. Pergamon Press, New York, 1965. | MR | Zbl

[11] K. Yano and S. Ishihara: Kaehlerian manifolds with constant scalar curvature whose Bochner curvature tensor vanishes. Hokkaido Math. J. 3 (1974), 297–304. | DOI | MR