Keywords: Kähler manifold; conformal tensor field; trace decomposition; concircular transformation; spectrum
@article{CMJ_2006_56_3_a4,
author = {Funabashi, Shoichi and Kim, Hyang Sook and Kim, Young-Mi and Pak, Jin Suk},
title = {Traceless component of the conformal curvature tensor in {K\"ahler} manifold},
journal = {Czechoslovak Mathematical Journal},
pages = {857--874},
year = {2006},
volume = {56},
number = {3},
mrnumber = {2261658},
zbl = {1164.53382},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a4/}
}
TY - JOUR AU - Funabashi, Shoichi AU - Kim, Hyang Sook AU - Kim, Young-Mi AU - Pak, Jin Suk TI - Traceless component of the conformal curvature tensor in Kähler manifold JO - Czechoslovak Mathematical Journal PY - 2006 SP - 857 EP - 874 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a4/ LA - en ID - CMJ_2006_56_3_a4 ER -
%0 Journal Article %A Funabashi, Shoichi %A Kim, Hyang Sook %A Kim, Young-Mi %A Pak, Jin Suk %T Traceless component of the conformal curvature tensor in Kähler manifold %J Czechoslovak Mathematical Journal %D 2006 %P 857-874 %V 56 %N 3 %U http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a4/ %G en %F CMJ_2006_56_3_a4
Funabashi, Shoichi; Kim, Hyang Sook; Kim, Young-Mi; Pak, Jin Suk. Traceless component of the conformal curvature tensor in Kähler manifold. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 857-874. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a4/
[1] M. Berger, P. Gauduchon et E. Mazet: Le Spectre d’une Variété Riemannienne. Lecture Notes in Mathematics 194, Springer-Verlag, , 1971. | MR
[2] H. Kitahara, K. Matsuo and J. S. Pak: A conformal curvature tensor field on hermitian manifolds; Appendium. J. Korean Math. Soc.; Bull. Korean Math. Soc. 27 (1990), 7–17; 27–30. | MR
[3] D. Krupka: The trace decomposition problem. Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry 36 (1995), 303–315. | MR | Zbl
[4] J. S. Pak, K.-H. Cho and J.-H. Kwon: Conformal curvature tensor field and spectrum of the Laplacian in Kaehlerian manifolds. Bull. Korean Math. Soc. 32 (1995), 309–319. | MR
[5] V. K. Patodi: Curvature and the fundamental solution of the heat operator. J. Indian Math. Soc. 34 (1970), 269–285. | MR
[6] S. Tachibana: Riemannian Geometry. Asakura Shoten, Tokyo, 1967. (Japanese)
[7] S. Tanno: Eigenvalues of the Laplacian of Riemannian manifolds. Tôhoku Math. J. 25 (1973), 391–403. | DOI | MR | Zbl
[8] Gr. Tsagas: On the spectrum of the Laplace operator for the exterior 2-forms. Tensor N. S. 33 (1979), 94–96. | MR | Zbl
[9] S. Yamaguchi and G. Chuman: Eigenvalues of the Laplacian of Sasakian manifolds. TRU Math. 15 (1979), 31–41. | MR
[10] K. Yano: Differential Geometry on complex and almost complex spaces. Pergamon Press, New York, 1965. | MR | Zbl
[11] K. Yano and S. Ishihara: Kaehlerian manifolds with constant scalar curvature whose Bochner curvature tensor vanishes. Hokkaido Math. J. 3 (1974), 297–304. | DOI | MR