Subalgebra extensions of partial monounary algebras
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 845-855
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For a subalgebra ${\mathcal B}$ of a partial monounary algebra ${\mathcal A}$ we define the quotient partial monounary algebra ${\mathcal A}/{\mathcal B}$. Let ${\mathcal B}$, ${\mathcal C}$ be partial monounary algebras. In this paper we give a construction of all partial monounary algebras ${\mathcal A}$ such that ${\mathcal B}$ is a subalgebra of ${\mathcal A}$ and ${\mathcal C}\cong {\mathcal A}/{\mathcal B}$.
For a subalgebra ${\mathcal B}$ of a partial monounary algebra ${\mathcal A}$ we define the quotient partial monounary algebra ${\mathcal A}/{\mathcal B}$. Let ${\mathcal B}$, ${\mathcal C}$ be partial monounary algebras. In this paper we give a construction of all partial monounary algebras ${\mathcal A}$ such that ${\mathcal B}$ is a subalgebra of ${\mathcal A}$ and ${\mathcal C}\cong {\mathcal A}/{\mathcal B}$.
Classification :
08A55, 08A60
Keywords: partial monounary algebra; subalgebra; congruence; quotient algebra; subalgebra extension; ideal; ideal extension
Keywords: partial monounary algebra; subalgebra; congruence; quotient algebra; subalgebra extension; ideal; ideal extension
@article{CMJ_2006_56_3_a3,
author = {Jakub{\'\i}kov\'a-Studenovsk\'a, Danica},
title = {Subalgebra extensions of partial monounary algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {845--855},
year = {2006},
volume = {56},
number = {3},
mrnumber = {2261657},
zbl = {1164.08305},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a3/}
}
Jakubíková-Studenovská, Danica. Subalgebra extensions of partial monounary algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 845-855. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a3/