Keywords: Komlós convergence; Henstock-Kurzweil integral; Henstock-Kurzweil-Pettis set-valued integral; selection
@article{CMJ_2006_56_3_a21,
author = {Satco, B.},
title = {A {Koml\'os-type} theorem for the set-valued {Henstock-Kurzweil-Pettis} integral and applications},
journal = {Czechoslovak Mathematical Journal},
pages = {1029--1047},
year = {2006},
volume = {56},
number = {3},
mrnumber = {2261675},
zbl = {1164.28301},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a21/}
}
Satco, B. A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1029-1047. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a21/
[1] E. Balder: New sequential compactness results for spaces of scalarly integrable functions. J. Math. Anal. Appl. 151 (1990), 1–16. | DOI | MR | Zbl
[2] E. Balder, C. Hess: Two generalizations of Komlós theorem with lower closure-type applications. J. Convex Anal. 3 (1996), 25–44. | MR
[3] E. Balder, A. R. Sambucini: On weak compactness and lower closure results for Pettis integrable (multi)functions. Bull. Pol. Acad. Sci. Math. 52 (2004), 53–61. | DOI | MR
[4] C. Castaing: Weak compactness and convergences in Bochner and Pettis integration. Vietnam J. Math. 24 (1996), 241–286. | MR
[5] C. Castaing, P. Clauzure: Compacité faible dans l’espace $L^1_E$ et dans l’espace des multifonctions intégrablement bornées, et minimisation. Ann. Mat. Pura Appl. 140 (1985), 345–364. | DOI | MR
[6] C. Castaing, M. Valadier: Convex Analysis and Measurable Multifunctions. Lect. Notes Math. Vol. 580, Springer-Verlag, Berlin, 1977. | DOI | MR
[7] T. S. Chew, F. Flordeliza: On $x^{\prime }=f(t,x)$ and Henstock-Kurzweil integrals. Differential Integral Equations 4 (1991), 861–868. | MR
[8] M. Cichón, I. Kubiaczyk, A. Sikorska: The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem. Czechoslovak Math. J. 54 (2004), 279–289. | DOI | MR
[9] K. El Amri, C. Hess: On the Pettis integral of closed valued multifunctions. Set-Valued Analysis 8 (2000), 329–360. | DOI | MR
[10] M. Federson, R. Bianconi: Linear integral equations of Volterra concerning Henstock integrals. Real Anal. Exchange 25 (1999/00), 389–417. | MR
[11] M. Federson, P. Táboas: Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals. Nonlinear Anal. Ser. A: Theory Methods 50 (2002), 389–407. | MR
[12] J. L. Gamez, J. Mendoza: On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Math. 130 (1998), 115–133. | MR
[13] R. A. Gordon: The Denjoy extension of the Bochner, Pettis and Dunford integrals]. Studia Math. 92 (1989), 73–91. | DOI | MR | Zbl
[14] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron and Henstock. Grad. Stud. Math. Vol 4, AMS, Providence, 1994. | DOI | MR | Zbl
[15] C. Hess: On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence. J. Multivariate Anal. 39 (1991), 175–201. | DOI | MR | Zbl
[16] C. Hess, H. Ziat: Théorème de Komlós pour des multifonctions intégrables au sens de Pettis et applications. Ann. Sci. Math. Québec 26 (2002), 181–198. | MR
[17] J. Komlós: A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229. | DOI | MR
[18] K. Musial: Topics in the theory of Pettis integration. In: School of Measure theory and Real Analysis, Grado, Italy, May 1992. Rend. Ist. Mat. Univ. Trieste 23 (1991), 177–262. | MR
[19] L. Di Piazza, K. Musial: Set-valued Kurzweil-Henstock-Pettis integral. Set-Valued Analysis 13 (2005), 167–179. | DOI | MR
[20] S. Schwabik: The Perron integral in ordinary differential equations. Differential Integral Equations 6 (1993), 863–882. | MR | Zbl