A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1029-1047 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper presents a Komlós theorem that extends to the case of the set-valued Henstock-Kurzweil-Pettis integral a result obtained by Balder and Hess (in the integrably bounded case) and also a result of Hess and Ziat (in the Pettis integrability setting). As applications, a solution to a best approximation problem is given, weak compactness results are deduced and, finally, an existence theorem for an integral inclusion involving the Henstock-Kurzweil-Pettis set-valued integral is obtained.
This paper presents a Komlós theorem that extends to the case of the set-valued Henstock-Kurzweil-Pettis integral a result obtained by Balder and Hess (in the integrably bounded case) and also a result of Hess and Ziat (in the Pettis integrability setting). As applications, a solution to a best approximation problem is given, weak compactness results are deduced and, finally, an existence theorem for an integral inclusion involving the Henstock-Kurzweil-Pettis set-valued integral is obtained.
Classification : 26A39, 26E25, 28A20, 28B20
Keywords: Komlós convergence; Henstock-Kurzweil integral; Henstock-Kurzweil-Pettis set-valued integral; selection
@article{CMJ_2006_56_3_a21,
     author = {Satco, B.},
     title = {A {Koml\'os-type} theorem for the set-valued {Henstock-Kurzweil-Pettis} integral and applications},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1029--1047},
     year = {2006},
     volume = {56},
     number = {3},
     mrnumber = {2261675},
     zbl = {1164.28301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a21/}
}
TY  - JOUR
AU  - Satco, B.
TI  - A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 1029
EP  - 1047
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a21/
LA  - en
ID  - CMJ_2006_56_3_a21
ER  - 
%0 Journal Article
%A Satco, B.
%T A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications
%J Czechoslovak Mathematical Journal
%D 2006
%P 1029-1047
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a21/
%G en
%F CMJ_2006_56_3_a21
Satco, B. A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1029-1047. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a21/

[1] E.  Balder: New sequential compactness results for spaces of scalarly integrable functions. J.  Math. Anal. Appl. 151 (1990), 1–16. | DOI | MR | Zbl

[2] E. Balder, C. Hess: Two generalizations of Komlós theorem with lower closure-type applications. J.  Convex Anal. 3 (1996), 25–44. | MR

[3] E.  Balder, A. R.  Sambucini: On weak compactness and lower closure results for Pettis integrable (multi)functions. Bull. Pol. Acad. Sci. Math. 52 (2004), 53–61. | DOI | MR

[4] C.  Castaing: Weak compactness and convergences in Bochner and Pettis integration. Vietnam J.  Math. 24 (1996), 241–286. | MR

[5] C.  Castaing, P.  Clauzure: Compacité faible dans l’espace  $L^1_E$ et dans l’espace des multifonctions intégrablement bornées, et minimisation. Ann. Mat. Pura Appl. 140 (1985), 345–364. | DOI | MR

[6] C.  Castaing, M.  Valadier: Convex Analysis and Measurable Multifunctions. Lect. Notes Math. Vol.  580, Springer-Verlag, Berlin, 1977. | DOI | MR

[7] T. S.  Chew, F. Flordeliza: On $x^{\prime }=f(t,x)$ and Henstock-Kurzweil integrals. Differential Integral Equations 4 (1991), 861–868. | MR

[8] M.  Cichón, I.  Kubiaczyk, A. Sikorska: The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem. Czechoslovak Math.  J. 54 (2004), 279–289. | DOI | MR

[9] K.  El Amri, C.  Hess: On the Pettis integral of closed valued multifunctions. Set-Valued Analysis 8 (2000), 329–360. | DOI | MR

[10] M.  Federson, R.  Bianconi: Linear integral equations of Volterra concerning Henstock integrals. Real Anal. Exchange 25 (1999/00), 389–417. | MR

[11] M.  Federson, P.  Táboas: Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals. Nonlinear Anal. Ser.  A: Theory Methods 50 (2002), 389–407. | MR

[12] J. L.  Gamez, J.  Mendoza: On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Math. 130 (1998), 115–133. | MR

[13] R. A.  Gordon: The Denjoy extension of the Bochner, Pettis and Dunford integrals]. Studia Math. 92 (1989), 73–91. | DOI | MR | Zbl

[14] R. A.  Gordon: The Integrals of Lebesgue, Denjoy, Perron and Henstock. Grad. Stud. Math. Vol  4, AMS, Providence, 1994. | DOI | MR | Zbl

[15] C.  Hess: On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence. J.  Multivariate Anal. 39 (1991), 175–201. | DOI | MR | Zbl

[16] C.  Hess, H.  Ziat: Théorème de Komlós pour des multifonctions intégrables au sens de Pettis et applications. Ann. Sci. Math. Québec 26 (2002), 181–198. | MR

[17] J.  Komlós: A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229. | DOI | MR

[18] K.  Musial: Topics in the theory of Pettis integration. In: School of Measure theory and Real Analysis, Grado, Italy, May  1992. Rend. Ist. Mat. Univ. Trieste 23 (1991), 177–262. | MR

[19] L.  Di Piazza, K.  Musial: Set-valued Kurzweil-Henstock-Pettis integral. Set-Valued Analysis 13 (2005), 167–179. | DOI | MR

[20] S.  Schwabik: The Perron integral in ordinary differential equations. Differential Integral Equations 6 (1993), 863–882. | MR | Zbl