On complemented subgroups of finite groups
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1019-1028
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A subgroup $H$ of a group $G$ is said to be complemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K=1$. In this paper we determine the structure of finite groups with some complemented primary subgroups, and obtain some new results about $p$-nilpotent groups.
A subgroup $H$ of a group $G$ is said to be complemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K=1$. In this paper we determine the structure of finite groups with some complemented primary subgroups, and obtain some new results about $p$-nilpotent groups.
Classification : 20D10, 20D15, 20D20, 20D40
Keywords: finite group; $p$-nilpotent group; primary subgroups; complemented subgroups
@article{CMJ_2006_56_3_a20,
     author = {Miao, Long},
     title = {On complemented subgroups of finite groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1019--1028},
     year = {2006},
     volume = {56},
     number = {3},
     mrnumber = {2261674},
     zbl = {1157.20323},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a20/}
}
TY  - JOUR
AU  - Miao, Long
TI  - On complemented subgroups of finite groups
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 1019
EP  - 1028
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a20/
LA  - en
ID  - CMJ_2006_56_3_a20
ER  - 
%0 Journal Article
%A Miao, Long
%T On complemented subgroups of finite groups
%J Czechoslovak Mathematical Journal
%D 2006
%P 1019-1028
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a20/
%G en
%F CMJ_2006_56_3_a20
Miao, Long. On complemented subgroups of finite groups. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1019-1028. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a20/

[1] Z. Arad, M. B. Ward: New criteria for the solvability of finite groups. J. Algebra 77 (1982), 234–246. | MR

[2] A. Ballester-Bolinches, X. Guo: On complemented subgroups of finite groups. Arch. Math. 72 (1999), 161–166. | DOI | MR

[3] F. Gross: Conjugacy of odd order Hall subgroup. Bull. London Math. Soc. 19 (1987), 311–319. | DOI | MR

[4] W. Guo: The Theory of Classes of Groups. Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000. | MR | Zbl

[5] W. Guo: The influence of minimal subgroups on the structure of finite groups. Southeast Asian Bulletin of Mathematics 22 (1998), 287–290. | MR | Zbl

[6] P. Hall: A characteristic property of soluble groups. J.  London Math. Soc. 12 (1937), 188–200. | MR | Zbl

[7] B. Huppert: Endliche Gruppen  I. Springer-Verlag, Berlin-Heidelberg-New York, 1967. | MR | Zbl

[8] O. H. Kegel: On Huppert’s characterization of finite supersoluble groups. In: Proc. Internat. Conf. Theory Groups, Canberra, 1965, , New York, 1967, pp. 209–215. | MR | Zbl

[9] O. H. Kegel: Produkte nilpotenter gruppen. Arch. Math. 12 (1961), 90–93. | DOI | MR | Zbl

[10] D. J. Robinson: A Course in the Theory of Groups. Springer-Verlag, Berlin-New York, 1993. | MR

[11] Y. Wang: Finite groups with some subgroups of Sylow subgroups c-supplemented. J. Algebra 224 (2000), 467–478. | MR | Zbl

[12] M. Xu: An Introduction to Finite Groups. Science Press, Beijing, 1999. (Chinese)

[13] Y. Zhang: The Structure of Finite Groups. Science Press, Beijing, 1982. (Chinese)