Keywords: multipartite tournaments; regular multipartite tournaments; cycles
@article{CMJ_2006_56_3_a2,
author = {Volkmann, Lutz and Winzen, Stefan},
title = {Cycles with a given number of vertices from each partite set in regular multipartite tournaments},
journal = {Czechoslovak Mathematical Journal},
pages = {827--843},
year = {2006},
volume = {56},
number = {3},
mrnumber = {2261656},
zbl = {1164.05398},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a2/}
}
TY - JOUR AU - Volkmann, Lutz AU - Winzen, Stefan TI - Cycles with a given number of vertices from each partite set in regular multipartite tournaments JO - Czechoslovak Mathematical Journal PY - 2006 SP - 827 EP - 843 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a2/ LA - en ID - CMJ_2006_56_3_a2 ER -
%0 Journal Article %A Volkmann, Lutz %A Winzen, Stefan %T Cycles with a given number of vertices from each partite set in regular multipartite tournaments %J Czechoslovak Mathematical Journal %D 2006 %P 827-843 %V 56 %N 3 %U http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a2/ %G en %F CMJ_2006_56_3_a2
Volkmann, Lutz; Winzen, Stefan. Cycles with a given number of vertices from each partite set in regular multipartite tournaments. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 827-843. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a2/
[1] J. Bang-Jensen, G. Gutin: Digraphs: Theory, Algorithms and Applications. Springer-Verlag, London, 2000. | MR
[2] L. W. Beineke, C. Little: Cycles in bipartite tournaments. J. Combinat. Theory Ser. B 32 (1982), 140–145. | DOI | MR
[3] J. A. Bondy: Diconnected orientations and a conjecture of Las Vergnas. J. London Math. Soc. 14 (1976), 277–282. | MR | Zbl
[4] P. Camion: Chemins et circuits hamiltoniens des graphes complets. C. R. Acad. Sci. Paris 249 (1959), 2151–2152. | MR | Zbl
[5] W. D. Goddard, O. R. Oellermann: On the cycle structure of multipartite tournaments. In: Graph Theory Combinat. Appl. 1, Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J. Schenk (eds.), Wiley-Interscience, New York, 1991, pp. 525–533. | MR
[6] Y. Guo: Semicomplete multipartite digraphs: a generalization of tournaments. Habilitation thesis, RWTH Aachen, 1998.
[7] G. Gutin: Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey. J. Graph Theory 19 (1995), 481–505. | DOI | MR | Zbl
[8] G. Gutin, A. Yeo: Note on the path covering number of a semicomplete multipartite digraph. J. Combinat. Math. Combinat. Comput. 32 (2000), 231–237. | MR
[9] J. W. Moon: On subtournaments of a tournament. Canad. Math. Bull. 9 (1966), 297–301. | DOI | MR | Zbl
[10] L. Rédei: Ein kombinatorischer Satz. Acta Litt. Sci. Szeged 7 (1934), 39–43.
[11] M. Tewes, L. Volkmann, and A. Yeo: Almost all almost regular $c$-partite tournaments with $c \ge 5$ are vertex pancyclic. Discrete Math. 242 (2002), 201–228. | DOI | MR
[12] L. Volkmann: Strong subtournaments of multipartite tournaments. Australas. J. Combin. 20 (1999), 189–196. | MR | Zbl
[13] L. Volkmann: Cycles in multipartite tournaments: results and problems. Discrete Math. 245 (2002), 19–53. | MR | Zbl
[14] L. Volkmann: All regular multipartite tournaments that are cycle complementary. Discrete Math. 281 (2004), 255–266. | DOI | MR | Zbl
[15] L. Volkmann, S. Winzen: Almost regular $c$-partite tournaments contain a strong subtournament of order $c$ when $c \ge 5$. Submitted.
[16] A. Yeo: One-diregular subgraphs in semicomplete multipartite digraphs. J. Graph Theory 24 (1997), 175–185. | DOI | MR | Zbl
[17] A. Yeo: Semicomplete multipartite digraphs. Ph.D. Thesis, Odense University, 1998. | Zbl
[18] A. Yeo: How close to regular must a semicomplete multipartite digraph be to secure Hamiltonicity?. Graphs Combin. 15 (1999), 481–493. | DOI | MR | Zbl
[19] K.-M. Zhang: Vertex even-pancyclicity in bipartite tournaments. Nanjing Daxue Xuebao Shuxue Bannian Kan 1 (1984), 85–88. | MR