Keywords: planar polynomial systems; Kukles systems; generalized Liénard systems; non-liouvillian first integrals
@article{CMJ_2006_56_3_a17,
author = {Schulze-Halberg, Axel},
title = {A simple method for constructing non-liouvillian first integrals of autonomous planar systems},
journal = {Czechoslovak Mathematical Journal},
pages = {987--999},
year = {2006},
volume = {56},
number = {3},
mrnumber = {2261671},
zbl = {1164.34396},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a17/}
}
TY - JOUR AU - Schulze-Halberg, Axel TI - A simple method for constructing non-liouvillian first integrals of autonomous planar systems JO - Czechoslovak Mathematical Journal PY - 2006 SP - 987 EP - 999 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a17/ LA - en ID - CMJ_2006_56_3_a17 ER -
Schulze-Halberg, Axel. A simple method for constructing non-liouvillian first integrals of autonomous planar systems. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 987-999. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a17/
[1] M. Bronstein and Sébastien Lafaille: Solutions of linear ordinary differential equations in terms of special functions. In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, , , 2002, pp. 23–28. | MR
[2] L. A. Čerkas: Conditions for a center for a certain Liénard equation. Differencial’nye Uravnenija 12 (1976), 292–298, 379. | MR
[3] J. Chavarriga, I. A. García, and J. Giné: On Lie’s symmetries for planar polynomial differential systems. Nonlinearity 14 (2001), 863–880. | DOI | MR
[4] E. S. Cheb-Terrab: Non-Liouvillian solutions for second order linear ODEs. Proceedings of the Workshop on Group Theory and Numerical Analysis, CRM, Montreal, 2003. | MR
[5] G. Darboux: Mémoire sur les équations différentielles algébraiques du premier ordre et du premier degré (Mélanges). Bull. Sci. Math. 2 (1878), 60–96, 123–144, 151–200.
[6] H. Giacomini, J. Giné, and M. Grau: Integrability of planar polynomial differential systems through linear differential equations. Rocky Mountain J. Math. (2004), . | MR
[7] J. Giné: Conditions for the existence of a center for the Kukles homogeneous system. Comput. Math. Appl. 43 (2002), 1261–1269. | DOI | MR
[8] I. S. Gradshteyn, I. M. Ryzhik: Tables of Series, Products and Integrals. Academic Press, San Diego, 1994. | MR
[9] A. Goriely: Integrability and Nonintegrability of Dynamical Systems. World Scientific Publishing, Singapore, 2001. | MR | Zbl
[10] C. Grosche, F. Steiner: How to solve path integrals in quantum mechanics. J. Math. Phys. 36 (1995), 2354–2385. | DOI | MR
[11] M. Hayashi: On the local center of generalized Liénard-type systems. Far East J. Math. Sci. (FJMS) 10 (2003), 265–283. | MR | Zbl
[12] D. Hilbert: Mathematical problems. Reprinted from Bull. Amer. Math. Soc. 8 (1902), 437–479. | DOI | MR
[13] P. D. Lax: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21 (1968), 467–490. | DOI | MR | Zbl
[14] Z. Liu, E. Sáez, and I. Szántó: A cubic system with an invariant triangle surrounding at least one limit cycle. Taiwanese J. Math. 7 (2003), 275–281. | DOI | MR
[15] R. Milson: Liouville transformation and exactly solvable Schrödinger equations. Internat. J. Theor. Phys. 37 (1998), 1735–1752. | DOI | MR | Zbl
[16] M. J. Prelle, M. F. Singer: Elementary first integrals of differential equations. Trans. Am. Math. Soc. 279 (1983), 215–229. | DOI | MR
[17] M. F. Singer: Liouvillian first integrals of differential equations. Trans. Amer. Math. Soc. 333 (1992), 673–688. | DOI | MR | Zbl
[18] J.-M. Strelcyn, S. Wojciechowski: A method of finding integrals for three-dimensional dynamical systems. Phys. Lett. A 133 (1988), 207–212. | DOI | MR
[19] A. G. Ushveridze: Quasi-exactly Solvable Models in Quantum Mechanics. Institute of Physics Publishing, London, 1994. | MR | Zbl
[20] F. J. Wright: Recognising and solving special function ODEs. Preprint (2000).
[21] C.-D. Zhao, Q.-M. He: On the center of the generalized Liénard system. Czechoslovak Math. J. 52 (127) (2002), 817–832. | DOI | MR | Zbl