Keywords: automorphism; local automorphism; algebra of operators on a Hilbert space
@article{CMJ_2006_56_3_a16,
author = {Fo\v{s}ner, Ajda},
title = {A note on local automorphisms},
journal = {Czechoslovak Mathematical Journal},
pages = {981--986},
year = {2006},
volume = {56},
number = {3},
mrnumber = {2261670},
zbl = {1164.47334},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a16/}
}
Fošner, Ajda. A note on local automorphisms. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 981-986. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a16/
[1] M. Brešar, P. Šemrl: On local automorphisms and mappings that preserve idempotents. Studia Math. 113 (1995), 101–108. | DOI | MR
[2] M. Eidelheit: On isomorphisms of rings of linear operators. Studia Math. 9 (1940), 97–105. | DOI | MR | Zbl
[3] P. A. Fillmore, W. E. Longstaff: On isomorphisms of lattices of closed subspaces. Canad. J. Math. 36 (1984), 820–829. | DOI | MR
[4] N. Jacobson, C. Rickart: Jordan homomorphisms of rings. Trans. Amer. Math. Soc. 69 (1950), 479–502. | DOI | MR
[5] D. Larson, A. R. Sourour: Local derivations and local automorphisms of ${B}(X)$. Proc. Symp. Pure Math. 51 (1990), 187–194. | MR
[6] C. Pearcy, D. Topping: Sums of small numbers of idempotents. Michigan Math. J. 14 (1967), 453–465. | DOI | MR