Keywords: sign pattern; orthogonality; orthogonal matrix
@article{CMJ_2006_56_3_a15,
author = {Shao, Yanling and Sun, Liang and Gao, Yubin},
title = {$\pm$ sign pattern matrices that allow orthogonality},
journal = {Czechoslovak Mathematical Journal},
pages = {969--979},
year = {2006},
volume = {56},
number = {3},
mrnumber = {2261669},
zbl = {1164.15327},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a15/}
}
Shao, Yanling; Sun, Liang; Gao, Yubin. $\pm$ sign pattern matrices that allow orthogonality. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 969-979. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a15/
[1] L. B. Beasley, R. A. Brualdi, and B. L. Shader: Combinatorial orthogonality. In: Combinatorial and Graph-Theoretical Problems in Linear Algebra, R. A. Brualdi, S. Friedland, and V. Klee (eds.), Springer-Verlag, Berlin, 1993, pp. 207–218. | MR
[2] G.-S. Cheon, B. L. Shader: How sparse can a matrix with orthogonal rows be?. Journal of Combinatorial Theory, Series A 85 (1999), 29–40. | DOI | MR
[3] C. Waters: Sign pattern matrices that allow orthogonality. Linear Algebra Appl. 235 (1996), 1–16. | MR | Zbl
[4] G.-S. Cheon, C. R. Johnson, S.-G. Lee, and E. J. Pribble: The possible numbers of zeros in an orthogonal matrix. Electron. J. Linear Algebra 5 (1999), 19–23. | MR
[5] C. A. Eschenbach, F. J. Hall, D. L. Harrell, and Z. Li: When does the inverse have the same pattern as the transpose?. Czechoslovak Math. J. 124 (1999), 255–275. | DOI | MR
[6] R. A. Horn, C. R. Johnson: Matrix Analysis. Cambridge University Press, Cambridge, 1985. | MR