$\pm$ sign pattern matrices that allow orthogonality
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 969-979 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A sign pattern $A$ is a $\pm $ sign pattern if $A$ has no zero entries. $A$ allows orthogonality if there exists a real orthogonal matrix $B$ whose sign pattern equals $A$. Some sufficient conditions are given for a sign pattern matrix to allow orthogonality, and a complete characterization is given for $\pm $ sign patterns with $n-1 \le N_-(A) \le n+1$ to allow orthogonality.
A sign pattern $A$ is a $\pm $ sign pattern if $A$ has no zero entries. $A$ allows orthogonality if there exists a real orthogonal matrix $B$ whose sign pattern equals $A$. Some sufficient conditions are given for a sign pattern matrix to allow orthogonality, and a complete characterization is given for $\pm $ sign patterns with $n-1 \le N_-(A) \le n+1$ to allow orthogonality.
Classification : 15A18, 15A36, 15A48, 15A99
Keywords: sign pattern; orthogonality; orthogonal matrix
@article{CMJ_2006_56_3_a15,
     author = {Shao, Yanling and Sun, Liang and Gao, Yubin},
     title = {$\pm$ sign pattern matrices that allow orthogonality},
     journal = {Czechoslovak Mathematical Journal},
     pages = {969--979},
     year = {2006},
     volume = {56},
     number = {3},
     mrnumber = {2261669},
     zbl = {1164.15327},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a15/}
}
TY  - JOUR
AU  - Shao, Yanling
AU  - Sun, Liang
AU  - Gao, Yubin
TI  - $\pm$ sign pattern matrices that allow orthogonality
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 969
EP  - 979
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a15/
LA  - en
ID  - CMJ_2006_56_3_a15
ER  - 
%0 Journal Article
%A Shao, Yanling
%A Sun, Liang
%A Gao, Yubin
%T $\pm$ sign pattern matrices that allow orthogonality
%J Czechoslovak Mathematical Journal
%D 2006
%P 969-979
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a15/
%G en
%F CMJ_2006_56_3_a15
Shao, Yanling; Sun, Liang; Gao, Yubin. $\pm$ sign pattern matrices that allow orthogonality. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 969-979. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a15/

[1] L. B.  Beasley, R. A.  Brualdi, and B. L.  Shader: Combinatorial orthogonality. In: Combinatorial and Graph-Theoretical Problems in Linear Algebra, R. A.  Brualdi, S.  Friedland, and V.  Klee (eds.), Springer-Verlag, Berlin, 1993, pp. 207–218. | MR

[2] G.-S.  Cheon, B. L.  Shader: How sparse can a matrix with orthogonal rows be?. Journal of Combinatorial Theory, Series A 85 (1999), 29–40. | DOI | MR

[3] C.  Waters: Sign pattern matrices that allow orthogonality. Linear Algebra Appl. 235 (1996), 1–16. | MR | Zbl

[4] G.-S.  Cheon, C. R.  Johnson, S.-G.  Lee, and E. J.  Pribble: The possible numbers of zeros in an orthogonal matrix. Electron.  J. Linear Algebra 5 (1999), 19–23. | MR

[5] C. A.  Eschenbach, F. J.  Hall, D. L.  Harrell, and Z.  Li: When does the inverse have the same pattern as the transpose?. Czechoslovak Math.  J. 124 (1999), 255–275. | DOI | MR

[6] R. A.  Horn, C. R.  Johnson: Matrix Analysis. Cambridge University Press, Cambridge, 1985. | MR