Mahler measures in a cubic field
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 949-956 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that every cyclic cubic extension $E$ of the field of rational numbers contains algebraic numbers which are Mahler measures but not the Mahler measures of algebraic numbers lying in $E$. This extends the result of Schinzel who proved the same statement for every real quadratic field $E$. A corresponding conjecture is made for an arbitrary non-totally complex field $E$ and some numerical examples are given. We also show that every natural power of a Mahler measure is a Mahler measure.
We prove that every cyclic cubic extension $E$ of the field of rational numbers contains algebraic numbers which are Mahler measures but not the Mahler measures of algebraic numbers lying in $E$. This extends the result of Schinzel who proved the same statement for every real quadratic field $E$. A corresponding conjecture is made for an arbitrary non-totally complex field $E$ and some numerical examples are given. We also show that every natural power of a Mahler measure is a Mahler measure.
Classification : 11R06, 11R09, 11R16
Keywords: Mahler measure; Pisot numbers; cubic extension
@article{CMJ_2006_56_3_a12,
     author = {Dubickas, Art\={u}ras},
     title = {Mahler measures in a cubic field},
     journal = {Czechoslovak Mathematical Journal},
     pages = {949--956},
     year = {2006},
     volume = {56},
     number = {3},
     mrnumber = {2261666},
     zbl = {1164.11068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a12/}
}
TY  - JOUR
AU  - Dubickas, Artūras
TI  - Mahler measures in a cubic field
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 949
EP  - 956
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a12/
LA  - en
ID  - CMJ_2006_56_3_a12
ER  - 
%0 Journal Article
%A Dubickas, Artūras
%T Mahler measures in a cubic field
%J Czechoslovak Mathematical Journal
%D 2006
%P 949-956
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a12/
%G en
%F CMJ_2006_56_3_a12
Dubickas, Artūras. Mahler measures in a cubic field. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 949-956. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a12/

[1] R. L. Adler, B. Marcus: Topological entropy and equivalence of dynamical systems. Mem. Amer. Math. Soc. 20 (1979), . | MR

[2] D. W. Boyd: Inverse problems for Mahler’s measure. In: Diophantine Analysis. London Math. Soc. Lecture Notes Vol. 109, J.  Loxton and A.  van der Poorten (eds.), Cambridge Univ. Press, Cambridge, 1986, pp. 147–158. | MR | Zbl

[3] D. W. Boyd: Perron units which are not Mahler measures. Ergod. Th. and Dynam. Sys. 6 (1986), 485–488. | DOI | MR | Zbl

[4] D. W. Boyd: Reciprocal algebraic integers whose Mahler measures are non-reciprocal. Canad. Math. Bull. 30 (1987), 3–8. | DOI | MR | Zbl

[5] J. D. Dixon, A. Dubickas: The values of Mahler measures. Mathematika 51 (2004), 131–148. | DOI | MR

[6] A. Dubickas: Mahler measures close to an integer. Canad. Math. Bull. 45 (2002), 196–203. | DOI | MR | Zbl

[7] A. Dubickas: On numbers which are Mahler measures. Monatsh. Math. 141 (2004), 119–126. | DOI | MR | Zbl

[8] A. Dubickas: Mahler measures generate the largest possible groups. Math. Res. Lett 11 (2004), 279–283. | DOI | MR | Zbl

[9] A.-H. Fan, J. Schmeling: $\varepsilon $-Pisot numbers in any real algebraic number field are relatively dense. J.  Algebra 272 (2004), 470–475. | DOI | MR

[10] D. H. Lehmer: Factorization of certain cyclotomic functions. Ann. of Math. 34 (1933), 461–479. | DOI | MR | Zbl

[11] R. Salem: Algebraic Numbers and Fourier Analysis. D. C.  Heath, Boston, 1963. | MR | Zbl

[12] A. Schinzel: Polynomials with Special Regard to Reducibility. Encyclopedia of Mathematics and its Applications Vol.  77. Cambridge University Press, Cambridge, 2000. | MR

[13] A. Schinzel: On values of the Mahler measure in a quadratic field (solution of a problem of Dixon and Dubickas). Acta Arith. 113 (2004), 401–408. | MR | Zbl

[14] M. Waldschmidt: Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables. Springer-Verlag, Berlin-New York, 2000. | MR | Zbl