Keywords: Mahler measure; Pisot numbers; cubic extension
@article{CMJ_2006_56_3_a12,
author = {Dubickas, Art\={u}ras},
title = {Mahler measures in a cubic field},
journal = {Czechoslovak Mathematical Journal},
pages = {949--956},
year = {2006},
volume = {56},
number = {3},
mrnumber = {2261666},
zbl = {1164.11068},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a12/}
}
Dubickas, Artūras. Mahler measures in a cubic field. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 949-956. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a12/
[1] R. L. Adler, B. Marcus: Topological entropy and equivalence of dynamical systems. Mem. Amer. Math. Soc. 20 (1979), . | MR
[2] D. W. Boyd: Inverse problems for Mahler’s measure. In: Diophantine Analysis. London Math. Soc. Lecture Notes Vol. 109, J. Loxton and A. van der Poorten (eds.), Cambridge Univ. Press, Cambridge, 1986, pp. 147–158. | MR | Zbl
[3] D. W. Boyd: Perron units which are not Mahler measures. Ergod. Th. and Dynam. Sys. 6 (1986), 485–488. | DOI | MR | Zbl
[4] D. W. Boyd: Reciprocal algebraic integers whose Mahler measures are non-reciprocal. Canad. Math. Bull. 30 (1987), 3–8. | DOI | MR | Zbl
[5] J. D. Dixon, A. Dubickas: The values of Mahler measures. Mathematika 51 (2004), 131–148. | DOI | MR
[6] A. Dubickas: Mahler measures close to an integer. Canad. Math. Bull. 45 (2002), 196–203. | DOI | MR | Zbl
[7] A. Dubickas: On numbers which are Mahler measures. Monatsh. Math. 141 (2004), 119–126. | DOI | MR | Zbl
[8] A. Dubickas: Mahler measures generate the largest possible groups. Math. Res. Lett 11 (2004), 279–283. | DOI | MR | Zbl
[9] A.-H. Fan, J. Schmeling: $\varepsilon $-Pisot numbers in any real algebraic number field are relatively dense. J. Algebra 272 (2004), 470–475. | DOI | MR
[10] D. H. Lehmer: Factorization of certain cyclotomic functions. Ann. of Math. 34 (1933), 461–479. | DOI | MR | Zbl
[11] R. Salem: Algebraic Numbers and Fourier Analysis. D. C. Heath, Boston, 1963. | MR | Zbl
[12] A. Schinzel: Polynomials with Special Regard to Reducibility. Encyclopedia of Mathematics and its Applications Vol. 77. Cambridge University Press, Cambridge, 2000. | MR
[13] A. Schinzel: On values of the Mahler measure in a quadratic field (solution of a problem of Dixon and Dubickas). Acta Arith. 113 (2004), 401–408. | MR | Zbl
[14] M. Waldschmidt: Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables. Springer-Verlag, Berlin-New York, 2000. | MR | Zbl