Keywords: oriented graph; graph (Shallon) algebra; congruence relation; ideal; quotient graph algebra; ideal extension
@article{CMJ_2006_56_3_a11,
author = {\v{C}ipkov\'a, Karla},
title = {Ideal extensions of graph algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {933--947},
year = {2006},
volume = {56},
number = {3},
mrnumber = {2261665},
zbl = {1164.08300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a11/}
}
Čipková, Karla. Ideal extensions of graph algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 933-947. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a11/
[1] A. H. Clifford: Extension of semigroup. Trans. Amer. Math. Soc. 68 (1950), 165–173. | DOI | MR
[2] A. J. Hullin: Extension of ordered semigroup. Czechoslovak Math. J. 26(101) (1976), 1–12.
[3] D. Jakubíková-Studenovská: Subalgebra extensions of partial monounary algebras. Czechoslovak Math. J, Submitted. | MR
[4] N. Kehaypulu, P. Kiriakuli: The ideal extension of lattices. Simon Stevin 64, 51–56. | MR
[5] N. Kehaypulu, M. Tsingelis: The ideal extension of ordered semigroups. Commun. Algebra 31 (2003), 4939–4969. | DOI | MR
[6] E. W. Kiss, R. Pöschel, P. Pröhle: Subvarieties of varieties generated by graph algebras. Acta Sci. Math. 54 (1990), 57–75. | MR
[7] J. Martinez: Torsion theory of lattice ordered groups. Czechoslovak Math. J. 25(100) (1975), 284–299. | MR
[8] S. Oates-Macdonald, M. Vaughan-Lee: Varieties that make one cross. J. Austral. Math. Soc. (Ser. A) 26 (1978), 368–382. | DOI | MR
[9] S. Oates-Williams: On the variety generated by Murskii’s algebra. Algebra Universalis 18 (1984), 175–177. | DOI | MR | Zbl
[10] R. Pöschel: Graph algebras and graph varieties. Algebra Universalis 27 (1990), 559–577. | DOI | MR
[11] R. Pöschel: Shallon algebras and varieties for graphs and relational systems. Algebra und Graphentheorie (Jahrestagung Algebra und Grenzgebiete), Bergakademie Freiberg, Section Math., Siebenlehn, 1986, pp. 53–56.
[12] C. R. Shallon: Nonfinitely based finite algebras derived from lattices. PhD. Dissertation, U.C.L.A, 1979.