Pták's characterization of reflexivity in tensor products
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 923-931
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We characterize the reflexivity of the completed projective tensor products $X{\widetilde{\otimes }_\pi } Y$ of Banach spaces in terms of certain approximative biorthogonal systems.
We characterize the reflexivity of the completed projective tensor products $X{\widetilde{\otimes }_\pi } Y$ of Banach spaces in terms of certain approximative biorthogonal systems.
Classification : 46B10, 46B28
Keywords: reflexive Banach space; biorthogonal system; $\pi $-tensor product
@article{CMJ_2006_56_3_a10,
     author = {John, Kamil},
     title = {Pt\'ak's characterization of reflexivity in tensor products},
     journal = {Czechoslovak Mathematical Journal},
     pages = {923--931},
     year = {2006},
     volume = {56},
     number = {3},
     mrnumber = {2261664},
     zbl = {1164.46308},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a10/}
}
TY  - JOUR
AU  - John, Kamil
TI  - Pták's characterization of reflexivity in tensor products
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 923
EP  - 931
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a10/
LA  - en
ID  - CMJ_2006_56_3_a10
ER  - 
%0 Journal Article
%A John, Kamil
%T Pták's characterization of reflexivity in tensor products
%J Czechoslovak Mathematical Journal
%D 2006
%P 923-931
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a10/
%G en
%F CMJ_2006_56_3_a10
John, Kamil. Pták's characterization of reflexivity in tensor products. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 923-931. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a10/

[1] J.  Diestel: Sequences and Series in Banach Spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1984. | MR

[2] A.  Grothendieck: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 16 (1955). | MR | Zbl

[3] S.  Heinrich: On the reflexivity of the Banach space  $L(X,Y)$. Funkcional’nyi Analiz i ego Prilozheniya 8 (1974), 97–98. | MR

[4] J. R.  Holub: Reflexivity of  $L(E,F)$. Proc. Amer. Math. Soc. 39 (1973), 175–177. | MR | Zbl

[5] H.  Jarchow: Locally Convex Spaces. Teubner-Verlag, Stuttgart, 1981. | MR | Zbl

[6] K.  John: $w^*$-basic sequences and reflexivity of Banach spaces. Czechoslovak Math. J 55 (2005), 677–681. | DOI | MR | Zbl

[7] W. B.  Johnson, H. P.  Rosenthal: On w$^*$  basic sequences and their applications to the study of Banach spaces. Studia Math. 43 (1972), 77–92. | DOI | MR

[8] G.  Köthe: Topological Vector Spaces  II. Springer-Verlag, Berlin-Heidelberg-New York, 1984. | MR

[9] A. Pełczyński: A note on the paper of I.  Singer “Basic sequences and reflexivity of Banach spaces”. Studia Math. 21 (1962), 371–374. | DOI | MR

[10] V.  Pták: Biorthogonal systems and reflexivity of Banach spaces. Czechoslovak Math.  J. 9 (1959), 319–325. | MR

[11] W.  Ruckle: Reflexivity of  $L(E,F)$. Proc. Amer. Math. Soc. 34 (1972), 171–174. | MR | Zbl

[12] W. Ruess: Duality and geometry of spaces of compact operators. In: Functional Analysis: Surveys and Recent Results  III. Math. Studies  90, North Holland, , 1984. | MR | Zbl

[13] I.  Singer: Basic sequences and reflexivity of Banach spaces. Studia Math. 21 (1962), 351–369. | DOI | MR | Zbl

[14] I.  Singer: Bases in Banach Spaces, Vol.  I. Springer-Verlag, Berlin-Heidelberg-New York, 1970. | MR