On integration of vector functions with respect to vector measures
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 805-825 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study integration of Banach space-valued functions with respect to Banach space-valued measures. We focus our attention on natural extensions to this setting of the Birkhoff and McShane integrals. The corresponding generalization of the Birkhoff integral was first considered by Dobrakov under the name $S^{*}$-integral. Our main result states that $S^{*}$-integrability implies McShane integrability in contexts in which the later notion is definable. We also show that a function is measurable and McShane integrable if and only if it is Dobrakov integrable (i.e. Bartle *-integrable).
We study integration of Banach space-valued functions with respect to Banach space-valued measures. We focus our attention on natural extensions to this setting of the Birkhoff and McShane integrals. The corresponding generalization of the Birkhoff integral was first considered by Dobrakov under the name $S^{*}$-integral. Our main result states that $S^{*}$-integrability implies McShane integrability in contexts in which the later notion is definable. We also show that a function is measurable and McShane integrable if and only if it is Dobrakov integrable (i.e. Bartle *-integrable).
Classification : 28B05, 46G10
Keywords: Bartle $^*$-integral; Dobrakov integral; McShane integral; Birkhoff integral; $S^*$-integral
@article{CMJ_2006_56_3_a1,
     author = {Rodr{\'\i}guez, Jos\'e},
     title = {On integration of vector functions with respect to vector measures},
     journal = {Czechoslovak Mathematical Journal},
     pages = {805--825},
     year = {2006},
     volume = {56},
     number = {3},
     mrnumber = {2261655},
     zbl = {1164.28305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a1/}
}
TY  - JOUR
AU  - Rodríguez, José
TI  - On integration of vector functions with respect to vector measures
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 805
EP  - 825
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a1/
LA  - en
ID  - CMJ_2006_56_3_a1
ER  - 
%0 Journal Article
%A Rodríguez, José
%T On integration of vector functions with respect to vector measures
%J Czechoslovak Mathematical Journal
%D 2006
%P 805-825
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a1/
%G en
%F CMJ_2006_56_3_a1
Rodríguez, José. On integration of vector functions with respect to vector measures. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 805-825. http://geodesic.mathdoc.fr/item/CMJ_2006_56_3_a1/

[1] R. G.  Bartle: A general bilinear vector integral. Studia Math. 15 (1956), 337–352. | DOI | MR | Zbl

[2] G. Birkhoff: Integration of functions with values in a Banach space. Trans. Amer. Math. Soc. 38 (1935), 357–378. | MR | Zbl

[3] B. Cascales, J. Rodríguez: The Birkhoff integral and the property of Bourgain. Math. Ann. 331 (2005), 259–279. | DOI | MR

[4] L. Di Piazza, D. Preiss: When do McShane and Pettis integrals coincide? Illinois J. Math. 47 (2003), 1177–1187. | DOI | MR

[5] J. Diestel, J. J.  Uhl, Jr.: Vector Measures. Mathematical Surveys, No.  15. American Mathematical Society, Providence, 1977. | MR

[6] I. Dobrakov: On integration in Banach spaces I. Czechoslovak Math. J. 20(95) (1970), 511–536. | MR | Zbl

[7] I. Dobrakov: On representation of linear operators on  $C_0(T,{\mathrm X})$. Czechoslovak Math.  J. 21(96) (1971), 13–30. | MR

[8] I. Dobrakov: On integration in Banach spaces VII. Czechoslovak Math.  J. 38(113) (1988), 434–449. | MR | Zbl

[9] I. Dobrakov, P. Morales: On integration in Banach spaces VI. Czechoslovak Math.  J. 35(110) (1985), 173–187. | MR

[10] N. Dunford, J. T.  Schwartz: Linear Operators. Part I. Wiley Classics Library, John Wiley & Sons, New York, 1988, General theory, with the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958  original, A Wiley-Interscience Publication. | MR

[11] D. H.  Fremlin: Four problems in measure theory. Version of 30.7.03. Available at URL http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm | MR

[12] D. H. Fremlin: The McShane and Birkhoff integrals of vector-valued functions. University of Essex Mathematics Department Research Report 92-10, version of 13.10.04. Available at URL http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

[13] D. H. Fremlin: Problem ET, version of 27.10.04. Available at URL http://www.essex.ac.uk/maths/staff/fremlin/problems.htm

[14] D. H. Fremlin: The generalized McShane integral. Illinois J.  Math. 39 (1995), 39–67. | DOI | MR | Zbl

[15] D. H. Fremlin: Measure Theory, Vol.  4: Topological Measure Spaces. Torres Fremlin, Colchester, 2003. | MR

[16] D. H.  Fremlin, J. Mendoza: On the integration of vector-valued functions. Illinois J.  Math. 38 (1994), 127–147. | DOI | MR

[17] F. J.  Freniche, J. C.  García-Vázquez: The Bartle bilinear integration and Carleman operators. J.  Math. Anal. Appl. 240 (1999), 324–339. | DOI | MR

[18] T. H.  Hildebrandt: Integration in abstract spaces. Bull. Amer. Math. Soc. 59 (1953), 111–139. | DOI | MR | Zbl

[19] B. Jefferies, S. Okada: Bilinear integration in tensor products. Rocky Mountain J.  Math. 28 (1998), 517–545. | DOI | MR

[20] A. N. Kolmogorov: Untersuchungen über Integralbegriff. Math. Ann. 103 (1930), 654–696. | DOI

[21] R. Pallu de La Barrière: Integration of vector functions with respect to vector measures. Studia Univ. Babeş-Bolyai Math. 43 (1998), 55–93. | MR

[22] T. V.  Panchapagesan: On the distinguishing features of the Dobrakov integral. Divulg. Mat. 3 (1995), 79–114. | MR | Zbl

[23] J. Rodríguez: On the existence of Pettis integrable functions which are not Birkhoff integrable. Proc. Amer. Math. Soc. 133 (2005), 1157–1163. | DOI | MR

[24] G. F.  Stefánsson: Integration in vector spaces. Illinois J.  Math. 45 (2001), 925–938. | DOI | MR

[25] Selected Works of A. N.  Kolmogorov. Vol. I: Mathematics and Mechanics, Mathematics and its Applications (Soviet Series), Vol. 25. V. M.  Tikhomirov (ed.), Kluwer Academic Publishers Group, Dordrecht, 1991, with commentaries by V. I.  Arnol’d, V. A.  Skvortsov, P. L.  Ul’yanov et al. Translated from the Russian original by V. M.  Volosov. | MR