On monotone permutations of $\ell$-cyclically ordered sets
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 403-415
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For an $\ell $-cyclically ordered set $M$ with the $\ell $-cyclic order $C$ let $P(M)$ be the set of all monotone permutations on $M$. We define a ternary relation $\overline{C}$ on the set $P(M)$. Further, we define in a natural way a group operation (denoted by $\cdot $) on $P(M)$. We prove that if the $\ell $-cyclic order $C$ is complete and $\overline{C}\ne \emptyset $, then $(P(M), \cdot ,\overline{C})$ is a half cyclically ordered group.
For an $\ell $-cyclically ordered set $M$ with the $\ell $-cyclic order $C$ let $P(M)$ be the set of all monotone permutations on $M$. We define a ternary relation $\overline{C}$ on the set $P(M)$. Further, we define in a natural way a group operation (denoted by $\cdot $) on $P(M)$. We prove that if the $\ell $-cyclic order $C$ is complete and $\overline{C}\ne \emptyset $, then $(P(M), \cdot ,\overline{C})$ is a half cyclically ordered group.
Classification : 06F15
Keywords: $\ell $-cyclically ordered set; completeness; monotone permutation; half cyclically ordered group
@article{CMJ_2006_56_2_a9,
     author = {Jakub{\'\i}k, J\'an},
     title = {On monotone permutations of $\ell$-cyclically ordered sets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {403--415},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291745},
     zbl = {1164.06327},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a9/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On monotone permutations of $\ell$-cyclically ordered sets
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 403
EP  - 415
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a9/
LA  - en
ID  - CMJ_2006_56_2_a9
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On monotone permutations of $\ell$-cyclically ordered sets
%J Czechoslovak Mathematical Journal
%D 2006
%P 403-415
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a9/
%G en
%F CMJ_2006_56_2_a9
Jakubík, Ján. On monotone permutations of $\ell$-cyclically ordered sets. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 403-415. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a9/

[1] Š.  Černák: On the maximal Dedekind completion of a half partially ordered group. Math. Slovaca 46 (1996), 379–390. | MR

[2] Š.  Černák: Cantor extension of a half lattice ordered group. Math. Slovaca 48 (1998), 221–231. | MR

[3] Š.  Černák: Maximal Dedekind completion of a half lattice ordered group. Math. Slovaca 49 (1999), 403–416. | MR

[4] M.  Droste, M.  Giraudet, and D.  Macpherson: Periodic ordered permutation groups and cyclic orderings. J.  Combinatorial Theory, Series  B 63 (1995), 310–321. | DOI | MR

[5] P. C.  Fishburn, D. R.  Woodall: Cyclic orders. Order 16 (1999), 149–164. | DOI | MR

[6] M.  Giraudet, F.  Lucas: Groupes à moitié ordonnés. Fundamenta Math. 139 (1991), 75–89. | DOI | MR

[7] M.  Giraudet, J.  Rachůnek: Varieties of half lattice ordered groups of monotonic permutations in chains. Prepublication No  57, Université Paris  7, CNRS Logique (1996).

[8] J.  Jakubík: On half lattice ordered groups. Czechoslovak Math.  J. 46 (1996), 745–767. | MR

[9] J.  Jakubík: Lexicographic products of half linearly ordered groups. Czechoslovak Math. J. 51 (2001), 127–138. | DOI | MR

[10] J.  Jakubík: On half cyclically ordered groups. Czechoslovak Math.  J. 52 (2002), 275–294. | DOI | MR

[11] J.  Jakubík, Š.  Černák: On convex linearly ordered subgroups of a $h\ell $-group. Math. Slovaca 50 (2000), 127–133. | MR

[12] V.  Novák: Cyclically ordered sets. Czechoslovak Math.  J. 32 (1982), 460–473. | MR

[13] V.  Novák, M.  Novotný: Universal cyclically ordered sets. Czechoslovak Math.  J. 35 (1985), 158–161. | MR

[14] V.  Novák, M.  Novotný: On representations of cyclically ordered sets. Czechoslovak Math.  J. 39 (1989), 127–132. | MR

[15] A.  Quilliot: Cyclic orders. European J.  Combin. 10 (1989), 477–488. | DOI | MR | Zbl

[16] Dao Rong Ton: Torsion classes and torsion prime selectors of $h\ell $-groups. Math. Slovaca 50 (2000), 31–40. | MR