Keywords: $\ell $-cyclically ordered set; completeness; monotone permutation; half cyclically ordered group
@article{CMJ_2006_56_2_a9,
author = {Jakub{\'\i}k, J\'an},
title = {On monotone permutations of $\ell$-cyclically ordered sets},
journal = {Czechoslovak Mathematical Journal},
pages = {403--415},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291745},
zbl = {1164.06327},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a9/}
}
Jakubík, Ján. On monotone permutations of $\ell$-cyclically ordered sets. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 403-415. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a9/
[1] Š. Černák: On the maximal Dedekind completion of a half partially ordered group. Math. Slovaca 46 (1996), 379–390. | MR
[2] Š. Černák: Cantor extension of a half lattice ordered group. Math. Slovaca 48 (1998), 221–231. | MR
[3] Š. Černák: Maximal Dedekind completion of a half lattice ordered group. Math. Slovaca 49 (1999), 403–416. | MR
[4] M. Droste, M. Giraudet, and D. Macpherson: Periodic ordered permutation groups and cyclic orderings. J. Combinatorial Theory, Series B 63 (1995), 310–321. | DOI | MR
[5] P. C. Fishburn, D. R. Woodall: Cyclic orders. Order 16 (1999), 149–164. | DOI | MR
[6] M. Giraudet, F. Lucas: Groupes à moitié ordonnés. Fundamenta Math. 139 (1991), 75–89. | DOI | MR
[7] M. Giraudet, J. Rachůnek: Varieties of half lattice ordered groups of monotonic permutations in chains. Prepublication No 57, Université Paris 7, CNRS Logique (1996).
[8] J. Jakubík: On half lattice ordered groups. Czechoslovak Math. J. 46 (1996), 745–767. | MR
[9] J. Jakubík: Lexicographic products of half linearly ordered groups. Czechoslovak Math. J. 51 (2001), 127–138. | DOI | MR
[10] J. Jakubík: On half cyclically ordered groups. Czechoslovak Math. J. 52 (2002), 275–294. | DOI | MR
[11] J. Jakubík, Š. Černák: On convex linearly ordered subgroups of a $h\ell $-group. Math. Slovaca 50 (2000), 127–133. | MR
[12] V. Novák: Cyclically ordered sets. Czechoslovak Math. J. 32 (1982), 460–473. | MR
[13] V. Novák, M. Novotný: Universal cyclically ordered sets. Czechoslovak Math. J. 35 (1985), 158–161. | MR
[14] V. Novák, M. Novotný: On representations of cyclically ordered sets. Czechoslovak Math. J. 39 (1989), 127–132. | MR
[15] A. Quilliot: Cyclic orders. European J. Combin. 10 (1989), 477–488. | DOI | MR | Zbl
[16] Dao Rong Ton: Torsion classes and torsion prime selectors of $h\ell $-groups. Math. Slovaca 50 (2000), 31–40. | MR