Real hypersurfaces with constant totally real bisectional curvature in complex space forms
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 377-388 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we classify real hypersurfaces with constant totally real bisectional curvature in a non flat complex space form $M_m(c)$, $c\ne 0$ as those which have constant holomorphic sectional curvature given in [6] and [13] or constant totally real sectional curvature given in [11].
In this paper we classify real hypersurfaces with constant totally real bisectional curvature in a non flat complex space form $M_m(c)$, $c\ne 0$ as those which have constant holomorphic sectional curvature given in [6] and [13] or constant totally real sectional curvature given in [11].
Classification : 53C12, 53C15, 53C40
Keywords: real hypersurfaces; totally real bisectional curvature; sectional curvature; holomorphic sectional curvature
@article{CMJ_2006_56_2_a7,
     author = {Ortega, Miguel and P\'erez, Juan de Dios and Suh, Young Jin},
     title = {Real hypersurfaces with constant totally real bisectional curvature in complex space forms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {377--388},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291743},
     zbl = {1164.53367},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a7/}
}
TY  - JOUR
AU  - Ortega, Miguel
AU  - Pérez, Juan de Dios
AU  - Suh, Young Jin
TI  - Real hypersurfaces with constant totally real bisectional curvature in complex space forms
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 377
EP  - 388
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a7/
LA  - en
ID  - CMJ_2006_56_2_a7
ER  - 
%0 Journal Article
%A Ortega, Miguel
%A Pérez, Juan de Dios
%A Suh, Young Jin
%T Real hypersurfaces with constant totally real bisectional curvature in complex space forms
%J Czechoslovak Mathematical Journal
%D 2006
%P 377-388
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a7/
%G en
%F CMJ_2006_56_2_a7
Ortega, Miguel; Pérez, Juan de Dios; Suh, Young Jin. Real hypersurfaces with constant totally real bisectional curvature in complex space forms. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 377-388. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a7/

[1] M. Barros and A. Romero: Indefinite Kaehler manifolds. Math. Ann. 281 (1982), 55–62. | MR

[2] R. L. Bishop and S. I. Goldberg: Some implications of the generalized Gauss-Bonnet Theorem. Trans. Amer. Math. Soc. 112 (1964), 508–535. | DOI | MR

[3] T. E. Cecil and P. J. Ryan: Focal sets and real hypersurfaces in complex projective space. Trans. A.M.S. 269 (1982), 481–499. | MR

[4] S. I. Goldberg and S. Kobayashi: Holomorphic bisectional curvature. J. Diff. Geometry 1 (1967), 225–234. | DOI | MR

[5] C. S. Houh: On totally real bisectional curvature. Proc. Amer. Math. Soc. 56 (1976), 261–263. | DOI | MR | Zbl

[6] M. Kimura: Sectional curvatures of holomorphic planes on a real hypersurface in $P_nC$. Math. Ann. 276 (1987), 487–499. | DOI | MR

[7] Y. Maeda: On real hypersurfaces of a complex projective space. J. Math. Soc. Japan 28 (1976), 529–540. | DOI | MR | Zbl

[8] S. Montiel: Real hypersurfaces of complex hyperbolic space. J. Math. Soc. Japan. 37 (1985), 515–535. | DOI | MR

[9] R. Niebergall and P. J. Ryan: Real hypersurfaces in complex space forms. Tight and taut Submanifolds, edited by T. E. Cecil and S. S. Chern, Cambridge U. Press, 1997, pp. 233–305. | MR

[10] M. Ortega and J. D. Pérez: Constant holomorphic sectional curvature and type number of real hypersurfaces of complex hyperbolic space. Proc. 4th Intnal. Congress of Geometry, Thessaloniki (1996). | MR

[11] M. Ortega, J. D. Pérez and Y. J. Suh: Real hypersurfaces with constant totally real sectional curvature in a complex space form. Czechoslovak Math. J. 50 (2000), 531–537. | DOI | MR

[12] J. D. Pérez and Y. J. Suh: Real hypersurfaces of quaternionic projective space satisfying ${\nabla }_{U_i}R=0$. Diff. Geom. and Its Appl. 7 (1997), 211–217. | DOI

[13] D. J. Sohn and Y. J. Suh: Classification of real hypersurfaces in complex hyperbolic space in terms of constant $\phi $-holomorphic sectional curvature. Kyungpook Math. J. 35 (1996), 801–819. | MR

[14] Y. J. Suh: A characterization of ruled real hypersurfaces in $P_nC$. J. Korean Math. Soc. 29 (1992), 351–359. | MR

[15] M. H. Vernon: Contact hypersurfaces of complex hyperbolic space. Tôhoku Math. J. 39 (1987), 215–222. | DOI | MR