The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 359-376 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is a continuation of [19], [21], [22]. We study flat connections with isolated singularities in some transitive Lie algebroids for which either $\mathbb{R}$ or $\mathop {\mathrm sl}(2,\mathbb{R})$ or $\operatorname{so} (3)$ are isotropy Lie algebras. Under the assumption that the dimension of the isotropy Lie algebra is equal to $n+1$, where $n$ is the dimension of the base manifold, we assign to any such isolated singularity a real number called an index. For $\mathbb{R}$-Lie algebroids, this index cannot be an integer. We prove the index theorem (the Euler-Poincaré-Hopf theorem for flat connections) saying that the index sum is independent of the choice of a connection. Multiplying this index sum by the orientation class of $M$, we get the Euler class of this Lie algebroid. Some integral formulae for indices are given.
This paper is a continuation of [19], [21], [22]. We study flat connections with isolated singularities in some transitive Lie algebroids for which either $\mathbb{R}$ or $\mathop {\mathrm sl}(2,\mathbb{R})$ or $\operatorname{so} (3)$ are isotropy Lie algebras. Under the assumption that the dimension of the isotropy Lie algebra is equal to $n+1$, where $n$ is the dimension of the base manifold, we assign to any such isolated singularity a real number called an index. For $\mathbb{R}$-Lie algebroids, this index cannot be an integer. We prove the index theorem (the Euler-Poincaré-Hopf theorem for flat connections) saying that the index sum is independent of the choice of a connection. Multiplying this index sum by the orientation class of $M$, we get the Euler class of this Lie algebroid. Some integral formulae for indices are given.
Classification : 53D17, 55R25, 57R19, 57R20, 58H05
Keywords: Lie algebroid; Euler class; index theorem; integration over the fibre; flat connection with singularitity
@article{CMJ_2006_56_2_a6,
     author = {Kubarski, Jan},
     title = {The {Euler-Poincar\'e-Hopf} theorem for flat connections in some transitive {Lie} algebroids},
     journal = {Czechoslovak Mathematical Journal},
     pages = {359--376},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291742},
     zbl = {1164.57304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a6/}
}
TY  - JOUR
AU  - Kubarski, Jan
TI  - The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 359
EP  - 376
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a6/
LA  - en
ID  - CMJ_2006_56_2_a6
ER  - 
%0 Journal Article
%A Kubarski, Jan
%T The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids
%J Czechoslovak Mathematical Journal
%D 2006
%P 359-376
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a6/
%G en
%F CMJ_2006_56_2_a6
Kubarski, Jan. The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 359-376. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a6/

[1] M. Atiyah: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85 (1957), 181–207. | DOI | MR | Zbl

[2] B.  Balcerzak, J.  Kubarski, and Walas: Primary characteristic homomorphism of pairs of Lie algebroids and Mackenzie algebroid. In: Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publications, Volume  54, Institute of Mathematics, Polish Academy of Science, Warszawa, 2001, pp. 135–173. | MR

[3] A. Coste, P. Dazord, and A. Weinstein: Groupoides Symplectiques. Publ. Dep. Math. Université de Lyon  1,  2/A, 1987. | MR

[4] P. Dazord, D. Sondaz: Varietes de Poisson—Algebroides de Lie. Publ. Dep. Math. Université de Lyon 1, 1/B, 1988. | MR

[5] S. Evens, J.-H.  Lu, A.  Weinstein: Transverse measures, the modular class, and a cohomology pairing for Lie algebroids. Quarterly J.  Math. (1999), 17–434. | MR

[6] J.  Grabowski: Lie algebroids and Poisson-Nijenhuis structures. Reports on Mathematics Physics, Vol.  40 (1997). | MR | Zbl

[7] J.  Grabowski, P.  Urbański: Algebroids—general differential calculi on vector bundles. J.  Geom. Phys. 31 (1999), 111–141. | DOI | MR

[8] W.  Greub, S.  Halperin, and R.  Vanstone: Connections, Curvature, and Cohomology. Pure and Aplied Mathematics 47, 47-II, 47-III. Academic Press, New York-London, 1971, 1973, 1976. | MR

[9] J. C. Herz: Pseudo-algèbres de Lie I, II. C.  R. Acad. Sci. Paris 263 (1953), 1935–1937, 2289–2291. | Zbl

[10] Y.  Kosmann-Schwarzbach: Exact Gerstenhaber Algebras and Lie Bialgebroids. Acta Applicandae Mathematicae 41 (1995), 153–165. | DOI | MR | Zbl

[11] Y.  Kosmann-Schwarzbach: The Lie Bialgebroid of a Poisson-Nijenhuis Manifold. Letters Mathematical Physics 38 (1996), 421–428. | DOI | MR | Zbl

[12] S.  Kobayashi, K.  Nomizu: Foundations of Differential Geometry, Vol. I. Interscience Publishers, New York-London, 1963. | MR

[13] J.  Kubarski: Pradines-type groupoids over foliations; cohomology, connections and the Chern-Weil homomorphism. Preprint Nr  2, Institute of Mathematics, Technical University of Łódź, August 1986. | MR

[14] J.  Kubarski: Lie Algebroid of a Principal Fibre Bundle. Publ. Dep. Math. University de Lyon 1, 1/A, 1989. | MR

[15] J. Kubarski: The Chern-Weil homomorphism of regular Lie algebroids. Publ. Dep. Math. University de Lyon  1, 1991.

[16] J. Kubarski: A criterion for the minimal closedness of the Lie subalgebra corresponding to a connected nonclosed Lie subgroup. Rev. Math. Complut. 4 (1991), 159–176. | MR | Zbl

[17] J. Kubarski: Invariant cohomology of regular Lie algebroids. Proceedings of the VIIth  International Colloquium on Differential Geometry, Spain, July 26–30, 1994, World Scientific, Singapure, 1995, pp. 137–151. | MR | Zbl

[18] J.  Kubarski: Bott’s Vanishing Theorem for Regular Lie Algebroids. Transaction of the A.M.S. Vol.  348, June  1996. | MR | Zbl

[19] J. Kubarski: Fibre integral in regular Lie algebroids. In: New Developments in Differential Geometry, Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27–30, 1996, Kluwer Academic Publishers, , 1999, pp. 173–202. | MR | Zbl

[20] J.  Kubarski: Connections in regular Poisson manifolds over $\mathbb{R}$-Lie foliations. In: Banach Center Publications, Vol.  51 “Poisson geometry”, , Warszawa, 2000, pp. 141–149. | MR

[21] J. Kubarski: Gysin sequence and Euler class of spherical Lie algebroids. In: Publicationes Mathematicae Debrecen, Tomus  59 vol. 3–4, 2001, pp. 245–269. | MR | Zbl

[22] J.  Kubarski: Weil algebra and secondary characteristic homomorphism of regular Lie algebroids. In: Lie algebroids and related topics in differential geometry, Banach Center Publications, Vol. 51, Inst. of Math. Polish Academy of Sciences, Warszawa, 2001, pp. 135–173. | MR

[23] J. Kubarski: Poincaré duality for transitive unimodular invariantly oriented Lie algebroids. In: Topology and Its Applications, Vol.  121, , , 2002, pp. 333–355. | MR | Zbl

[24] J. Kubarski: The Euler-Poincaré-Hopf theorem for some regular $\mathbb{R}$-Lie algebroids. In: Proceedings of the Ist Colloquium on Lie Theory and Applications, Universidad de Vigo, 2002, pp. 105–112. | MR

[25] A.  Kumpera: An introduction to Lie groupoids. Duplicated notes, Núcleo de Estudos e Pesquiese Cientificas, Rio de Janeiro, 1971. (The greater part of these Notes appear as the Appendix of [26]), , , , pp. .

[26] A.  Kumpera, D. C.  Spencer: Lie equations, Vol.  I: General theory. Annals of Math. Studies, No. 73, Princeton University Press, Princeton, 1972. | MR

[27] P.  Libermann: Pseudogroupes infinitésimaux attachés aux pseudogroupes de Lie. Bull. Soc. Math. France 87 (1959), 409–425. | DOI | MR | Zbl

[28] P.  Libermann: Sur les prolongements des fibrés principaux et groupoides différentiables banachiques. In: Seminaire de mathématiques superieures—élé 1969, Analyse Globale, Les presses de l’Université de Montréal, Montréal, 1971, pp. 7–108. | MR

[29] K.  Mackenzie: Lie Groupoids and Lie Algebroids in Differential Geometry. Cambridge University Press, Cambridge, 1987. | MR | Zbl

[30] K. Mackenzie: Lie algebroids and Lie pseudoalgebras. Bull. London Math. Soc. 27 (1995), 97–147. | DOI | MR | Zbl

[31] P. Molino: Etude des feuilletages transversalement complets et applications. Ann. Sci. Ecole Norm. Sup. 10 (1977), 289–307. | DOI | MR | Zbl

[32] P. Molino: Riemannian Foliations. Progress in Mathematics, Vol. 73. Birkhäuser-Verlag, Boston-Basel, 1988. | MR

[33] L. Maxim-Raileanu: Cohomology of Lie algebroids. An. Sti. Univ. “Al. I. Cuza” Iasi. Sect.  I a Mat.  XXII f2 (1976), 197–199. | MR | Zbl

[34] Ngo Van Que: Du prolongement des espaces fibrés et des structures infinitésimales. (1967), Ann. Inst. Fourier, Grenoble, 157–223.

[35] Ngo Van Que: Sur l’espace de prolongement différentiable. J.  of. Diff. Geom. 2 (1968), 33–40. | DOI | MR | Zbl

[36] J.  Pradines: Théorie de Lie pour les groupoides differentiables. In: Atti del Convegno Internazionale di Geometria Differenziale, Bologna, September 28–30, 1967, , , 1970, pp. 233–236. | Zbl

[37] I.  Vaisman: Complementary 2-forms of Poisson Structures. Compositio Mathematica 101 (1996), 55–75. | MR | Zbl

[38] I.  Vaisman: The $BV$-algebra of a Jacobi manifolds. Annales Polonici Mathematici 73 (2000), 275–290 (arXiv:math.DG/9904112). | DOI | MR