@article{CMJ_2006_56_2_a4,
author = {Lianzhen, Liu and Kaitai, Li},
title = {$R_0$-algebras and weak dually residuated lattice ordered semigroups},
journal = {Czechoslovak Mathematical Journal},
pages = {339--348},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291740},
zbl = {1164.06324},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a4/}
}
Lianzhen, Liu; Kaitai, Li. $R_0$-algebras and weak dually residuated lattice ordered semigroups. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 339-348. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a4/
[1] C. C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. | DOI | MR | Zbl
[2] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, 1998. | MR
[3] T. Kovář: A general theory of dually residuated lattice ordered monoids. Thesis, Palacký Univ. Olomouc, 1996.
[4] T. Kovář: Two remarks on dually residuated lattice ordered semigroups. Math. Slovaca 49 (1999), 17–18. | MR
[5] J. Rachůnek: DRL-semigroups and $MV$-algebras. Czechoslovak Math. J. 123 (1998), 365–372. | MR
[6] J. Rachůnek: $MV$-algebras are categorically equivalent to a class of $DRL_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441. | MR
[7] L. Z. Liu and K. T. Li: Pseudo MTL-algebras and pseudo $R_0$-algebras. Sci. Math. Jpn. 61 (2005), 423–427. | MR
[8] D. W. Pei and G. J. Wang: The completeness and application of formal systems. Science in China (series E) 1 (2002), 56–64. | MR
[9] K. L. N. Swamy: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114. | DOI | MR | Zbl
[10] G. J. Wang: Non-classical Mathematical Logic and Approximate Reasoning. Science Press, BeiJing, 2000.