On $\scr L$-starcompact spaces
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 781-788
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A space $X$ is $\mathcal L$-starcompact if for every open cover $\mathcal U$ of $X,$ there exists a Lindelöf subset $L$ of $X$ such that $\mathop {\mathrm St}(L,{\mathcal U})=X.$ We clarify the relations between ${\mathcal L}$-starcompact spaces and other related spaces and investigate topological properties of ${\mathcal L}$-starcompact spaces. A question of Hiremath is answered.
A space $X$ is $\mathcal L$-starcompact if for every open cover $\mathcal U$ of $X,$ there exists a Lindelöf subset $L$ of $X$ such that $\mathop {\mathrm St}(L,{\mathcal U})=X.$ We clarify the relations between ${\mathcal L}$-starcompact spaces and other related spaces and investigate topological properties of ${\mathcal L}$-starcompact spaces. A question of Hiremath is answered.
Classification :
54B10, 54D20, 54D55
Keywords: Lindelöf; star-Lindelöf and ${\mathcal L}$-starcompact
Keywords: Lindelöf; star-Lindelöf and ${\mathcal L}$-starcompact
@article{CMJ_2006_56_2_a39,
author = {Song, Yan-Kui},
title = {On $\scr L$-starcompact spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {781--788},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291775},
zbl = {1164.54356},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a39/}
}
Song, Yan-Kui. On $\scr L$-starcompact spaces. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 781-788. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a39/