On $\scr L$-starcompact spaces
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 781-788
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A space $X$ is $\mathcal L$-starcompact if for every open cover $\mathcal U$ of $X,$ there exists a Lindelöf subset $L$ of $X$ such that $\mathop {\mathrm St}(L,{\mathcal U})=X.$ We clarify the relations between ${\mathcal L}$-starcompact spaces and other related spaces and investigate topological properties of ${\mathcal L}$-starcompact spaces. A question of Hiremath is answered.
A space $X$ is $\mathcal L$-starcompact if for every open cover $\mathcal U$ of $X,$ there exists a Lindelöf subset $L$ of $X$ such that $\mathop {\mathrm St}(L,{\mathcal U})=X.$ We clarify the relations between ${\mathcal L}$-starcompact spaces and other related spaces and investigate topological properties of ${\mathcal L}$-starcompact spaces. A question of Hiremath is answered.
Classification : 54B10, 54D20, 54D55
Keywords: Lindelöf; star-Lindelöf and ${\mathcal L}$-starcompact
@article{CMJ_2006_56_2_a39,
     author = {Song, Yan-Kui},
     title = {On $\scr L$-starcompact spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {781--788},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291775},
     zbl = {1164.54356},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a39/}
}
TY  - JOUR
AU  - Song, Yan-Kui
TI  - On $\scr L$-starcompact spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 781
EP  - 788
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a39/
LA  - en
ID  - CMJ_2006_56_2_a39
ER  - 
%0 Journal Article
%A Song, Yan-Kui
%T On $\scr L$-starcompact spaces
%J Czechoslovak Mathematical Journal
%D 2006
%P 781-788
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a39/
%G en
%F CMJ_2006_56_2_a39
Song, Yan-Kui. On $\scr L$-starcompact spaces. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 781-788. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a39/

[1] E. K. van Douwen, G. M. Reed, A. W. Roscoe and I. J. Tree: Star covering properties. Topology Appl. 39 (1991), 71–103. | DOI | MR

[2] R. Engelking: General Topology, Revised and completed edition. Heldermann Verlag, Berlin, 1989. | MR

[3] G. R. Hiremath: On star with Lindelöf center property. J. Indian Math. Soc. 59 (1993), 227–242. | MR | Zbl

[4] S. Ikenaga: A class which contains Lindelöf spaces, separable spaces and countably compact spaces. Memories of Numazu College of Technology 18 (1983), 105–108.

[5] R. C. Walker: The Stone-Čech compactification. Berlin, 1974. | MR | Zbl

[6] M. V. Matveev: A survey on star-covering properties. Topological Atlas, preprint No. 330, 1998.

[7] S. Mrówka: On complete regular spaces. Fund. Math. 41 (1954), 105–106.

[8] Y. Yasui and Z. Gao: Space in countable web. Houston J. Math. 25 (1999), 327–325. | MR