Keywords: Lindelöf; star-Lindelöf and ${\mathcal L}$-starcompact
@article{CMJ_2006_56_2_a39,
author = {Song, Yan-Kui},
title = {On $\scr L$-starcompact spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {781--788},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291775},
zbl = {1164.54356},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a39/}
}
Song, Yan-Kui. On $\scr L$-starcompact spaces. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 781-788. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a39/
[1] E. K. van Douwen, G. M. Reed, A. W. Roscoe and I. J. Tree: Star covering properties. Topology Appl. 39 (1991), 71–103. | DOI | MR
[2] R. Engelking: General Topology, Revised and completed edition. Heldermann Verlag, Berlin, 1989. | MR
[3] G. R. Hiremath: On star with Lindelöf center property. J. Indian Math. Soc. 59 (1993), 227–242. | MR | Zbl
[4] S. Ikenaga: A class which contains Lindelöf spaces, separable spaces and countably compact spaces. Memories of Numazu College of Technology 18 (1983), 105–108.
[5] R. C. Walker: The Stone-Čech compactification. Berlin, 1974. | MR | Zbl
[6] M. V. Matveev: A survey on star-covering properties. Topological Atlas, preprint No. 330, 1998.
[7] S. Mrówka: On complete regular spaces. Fund. Math. 41 (1954), 105–106.
[8] Y. Yasui and Z. Gao: Space in countable web. Houston J. Math. 25 (1999), 327–325. | MR