Estimates of global dimension
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 773-780
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note we show that for a $\ast ^{n}$-module, in particular, an almost $n$-tilting module, $P$ over a ring $R$ with $A=\mathop {\mathrm End}_{R}P$ such that $P_A$ has finite flat dimension, the upper bound of the global dimension of $A$ can be estimated by the global dimension of $R$ and hence generalize the corresponding results in tilting theory and the ones in the theory of $\ast $-modules. As an application, we show that for a finitely generated projective module over a VN regular ring $R$, the global dimension of its endomorphism ring is not more than the global dimension of $R$.
In this note we show that for a $\ast ^{n}$-module, in particular, an almost $n$-tilting module, $P$ over a ring $R$ with $A=\mathop {\mathrm End}_{R}P$ such that $P_A$ has finite flat dimension, the upper bound of the global dimension of $A$ can be estimated by the global dimension of $R$ and hence generalize the corresponding results in tilting theory and the ones in the theory of $\ast $-modules. As an application, we show that for a finitely generated projective module over a VN regular ring $R$, the global dimension of its endomorphism ring is not more than the global dimension of $R$.
Classification : 16D90, 16E10, 16E30
Keywords: global dimension; $\ast $-module
@article{CMJ_2006_56_2_a38,
     author = {Jiaqun, Wei},
     title = {Estimates of global dimension},
     journal = {Czechoslovak Mathematical Journal},
     pages = {773--780},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291774},
     zbl = {1157.16301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a38/}
}
TY  - JOUR
AU  - Jiaqun, Wei
TI  - Estimates of global dimension
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 773
EP  - 780
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a38/
LA  - en
ID  - CMJ_2006_56_2_a38
ER  - 
%0 Journal Article
%A Jiaqun, Wei
%T Estimates of global dimension
%J Czechoslovak Mathematical Journal
%D 2006
%P 773-780
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a38/
%G en
%F CMJ_2006_56_2_a38
Jiaqun, Wei. Estimates of global dimension. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 773-780. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a38/

[1] R. Colpi: Some remarks on equivalences between categories of modules. Commun. Algebra 18 (1990), 1935–1951. | DOI | MR | Zbl

[2] R. Colpi: Tilting modules and $\ast $-modules. Commun. Algebra 21 (1993), 1095–1102. | DOI | MR

[3] R. Colpi, C.  Menini: On the structure of $\ast $-modules. J. Algebra 158 (1993), 400–419. | DOI | MR

[4] R. Colpi, J. Trlifaj: Classes of generalized $\ast $-modules. Commun. Algebra 22 (1994), 3985–3995. | DOI | MR

[5] K. R. Fuller: $\ast $-modules over ring extensions. Commun. Algebra 25 (1997), 2839–2860. | DOI | MR

[6] I. Kaplansky: Projective modules. Ann. Math. 68 (1958), 372–377. | DOI | MR | Zbl

[7] Y. Miyashita: Tilting modules of finite projective dimension. Math. Zeit. 193 (1986), 113–146. | DOI | MR | Zbl

[8] C. Menini, A. Orsatti: Representable equivalences between categories of modules and applications. Rend. Sem. Mat. Univ. Padova 82 (1989), 203–231. | MR

[9] M. Sato: Fuller’s Theorem on equivalences. J.  Algebra 52 (1978), 174–184. | MR | Zbl

[10] J. Trlifaj: Dimension estimates for representable equivalences of module categories. J.  Algebra 193 (1997), 660–676. | DOI | MR | Zbl

[11] J. Trlifaj: $\ast $-modules are finitely generated. J.  Algebra 169 (1994), 392–398. | DOI

[12] J. Wei: Global dimension of the endomorphism ring and $\ast ^n$modules. J. Algebra 291 (2005), 238–249. | DOI | MR

[13] J. Wei: $(n,t)$-quasi-projective and equivalences. Commun. Algebra (to appear). | MR | Zbl

[14] J. Wei, Z.  Huang, W. Tong, and J. Huang: Tilting modules of finite projective dimension and a generalization of $\ast $-modules. J.  Algebra 268 (2003), 404–418. | DOI | MR

[15] B. Zimmerman-Huisgen: Endomorphism rings of self-generators. Pacific J.  Math. 61 (1975), 587–602. | DOI | MR