@article{CMJ_2006_56_2_a38,
author = {Jiaqun, Wei},
title = {Estimates of global dimension},
journal = {Czechoslovak Mathematical Journal},
pages = {773--780},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291774},
zbl = {1157.16301},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a38/}
}
Jiaqun, Wei. Estimates of global dimension. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 773-780. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a38/
[1] R. Colpi: Some remarks on equivalences between categories of modules. Commun. Algebra 18 (1990), 1935–1951. | DOI | MR | Zbl
[2] R. Colpi: Tilting modules and $\ast $-modules. Commun. Algebra 21 (1993), 1095–1102. | DOI | MR
[3] R. Colpi, C. Menini: On the structure of $\ast $-modules. J. Algebra 158 (1993), 400–419. | DOI | MR
[4] R. Colpi, J. Trlifaj: Classes of generalized $\ast $-modules. Commun. Algebra 22 (1994), 3985–3995. | DOI | MR
[5] K. R. Fuller: $\ast $-modules over ring extensions. Commun. Algebra 25 (1997), 2839–2860. | DOI | MR
[6] I. Kaplansky: Projective modules. Ann. Math. 68 (1958), 372–377. | DOI | MR | Zbl
[7] Y. Miyashita: Tilting modules of finite projective dimension. Math. Zeit. 193 (1986), 113–146. | DOI | MR | Zbl
[8] C. Menini, A. Orsatti: Representable equivalences between categories of modules and applications. Rend. Sem. Mat. Univ. Padova 82 (1989), 203–231. | MR
[9] M. Sato: Fuller’s Theorem on equivalences. J. Algebra 52 (1978), 174–184. | MR | Zbl
[10] J. Trlifaj: Dimension estimates for representable equivalences of module categories. J. Algebra 193 (1997), 660–676. | DOI | MR | Zbl
[11] J. Trlifaj: $\ast $-modules are finitely generated. J. Algebra 169 (1994), 392–398. | DOI
[12] J. Wei: Global dimension of the endomorphism ring and $\ast ^n$modules. J. Algebra 291 (2005), 238–249. | DOI | MR
[13] J. Wei: $(n,t)$-quasi-projective and equivalences. Commun. Algebra (to appear). | MR | Zbl
[14] J. Wei, Z. Huang, W. Tong, and J. Huang: Tilting modules of finite projective dimension and a generalization of $\ast $-modules. J. Algebra 268 (2003), 404–418. | DOI | MR
[15] B. Zimmerman-Huisgen: Endomorphism rings of self-generators. Pacific J. Math. 61 (1975), 587–602. | DOI | MR