A note on Riesz spaces with property-$b$
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 765-772
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study an order boundedness property in Riesz spaces and investigate Riesz spaces and Banach lattices enjoying this property.
We study an order boundedness property in Riesz spaces and investigate Riesz spaces and Banach lattices enjoying this property.
@article{CMJ_2006_56_2_a37,
author = {Alpay, \c{S}. and Altin, B. and Tonyali, C.},
title = {A note on {Riesz} spaces with property-$b$},
journal = {Czechoslovak Mathematical Journal},
pages = {765--772},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291773},
zbl = {1164.46310},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a37/}
}
Alpay, Ş.; Altin, B.; Tonyali, C. A note on Riesz spaces with property-$b$. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 765-772. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a37/
[1] Ş. Alpay, B. Altın and C. Tonyalı: On property-$b$ of vector lattices. Positivity 7 (2003), 135–139. | DOI | MR
[2] A. C. Zaanen: Riesz spaces II. North-Holland, 1983. | MR | Zbl
[3] C. D. Aliprantis, O. Burkinshaw: Positive Operators. Academic Press, 1985. | MR
[4] D. A. Birnbaum: Preregular maps between Banach lattices. Bull. Austral. Math. Soc. 11 (1974), 231–254. | DOI | MR | Zbl
[5] H. H. Schaefer: Banach Lattices and Positive Operators. Springer, 1974. | MR | Zbl
[6] F. Paneque and C. Piñeiro: A note on operator Banach spaces containing a complemented copy of $c_0$. Arch. Math. 75 (2000), 370–375. | DOI | MR