Keywords: $DR\ell $-monoid; $MV$-algebra; $BL$-algebra; Brouwerian algebra; negation
@article{CMJ_2006_56_2_a36,
author = {Rach\r{u}nek, Ji\v{r}{\'\i} and Slez\'ak, Vladim{\'\i}r},
title = {Negation in bounded commutative $DR\ell$-monoids},
journal = {Czechoslovak Mathematical Journal},
pages = {755--763},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291772},
zbl = {1164.06325},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a36/}
}
Rachůnek, Jiří; Slezák, Vladimír. Negation in bounded commutative $DR\ell$-monoids. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 755-763. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a36/
[1] R. L. O. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht, 2000. | MR
[2] R. Cignoli and A. Torrens: Hájek basic fuzzy logic and Lukasiewicz infinite-valued logic. Arch. Math. Logic 42 (2003), 361–370. | DOI | MR
[3] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer, Amsterdam, 1998. | MR
[4] J. Rachůnek: $DR\ell $-semigroups and $MV$-algebras. Czechoslovak Math. J. 48 (1998), 365–372. | DOI | MR
[5] J. Rachůnek: $MV$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441. | MR
[6] J. Rachůnek: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids. Math. Bohem. 126 (2001), 561–569. | MR
[7] K. L. N. Swamy: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114. | DOI | MR | Zbl
[8] K. L. N. Swamy: Dually residuated lattice ordered semigroups II. Math. Ann. 160 (1965), 65–71. | MR
[9] K. L. N. Swamy: Dually residuated lattice ordered semigroups III. Math. Ann. 167 (1966), 71–74. | DOI | MR | Zbl
[10] K. N. Swamy and B. V. Subba Rao: Isometries in dually residuated lattice ordered semigroups. Math. Sem. Notes (Kobe) 8 (1980), 369–380. | MR