Keywords: lattice ordered group; generalized Boolean algebra; extension; vector lattice; subdirect decomposition; value; radical
@article{CMJ_2006_56_2_a35,
author = {Jakub{\'\i}k, J\'an},
title = {Subdirect decompositions and the radical of a generalized {Boolean} algebra extension of a lattice ordered group},
journal = {Czechoslovak Mathematical Journal},
pages = {733--754},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291771},
zbl = {1164.06328},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a35/}
}
TY - JOUR AU - Jakubík, Ján TI - Subdirect decompositions and the radical of a generalized Boolean algebra extension of a lattice ordered group JO - Czechoslovak Mathematical Journal PY - 2006 SP - 733 EP - 754 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a35/ LA - en ID - CMJ_2006_56_2_a35 ER -
Jakubík, Ján. Subdirect decompositions and the radical of a generalized Boolean algebra extension of a lattice ordered group. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 733-754. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a35/
[1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967. | MR | Zbl
[2] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl
[3] P. Conrad and M. R. Darnel: Generalized Boolean algebras in lattice ordered groups. Order 14 (1998), 295–319. | MR
[4] P. Conrad and M. R. Darnel: Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Math. J 51 (2001), 395–413. | DOI | MR
[5] C. Goffman: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions. Trans. Amer. Math. Soc. 88 (1958), 107–120. | MR | Zbl
[6] J. Jakubík: Cardinal properties of lattice ordered groups. Fundamenta Math. 74 (1972), 85–98. | DOI | MR
[7] J. Jakubík: Torsion classes of Specker lattice ordered groups. Czechoslovak Math. J. 52 (2002), 469–482. | DOI | MR
[8] J. Jakubík: On vector lattices of elementary Carathéodory functions. Czechoslovak Math. J 55 (2005), 223-236. | DOI | MR
[9] J. Jakubík: Torsion classes and subdirect products of Carathéodory vector lattices. Math. Slovaca 56 (2006), 79–92. | MR
[10] J. Jakubík: Generalized Boolean algebra extensions of lattice ordered groups. Tatra Mt. Math. Publ. 30 (2005), 1–19. | MR
[11] F. Šik: Über subdirekte Summen geordneter Gruppen. Czechoslovak Math. J. 10 (1960), 400–424. | MR