A note on characteristic classes
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 721-732 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper studies the relationship between the sections and the Chern or Pontrjagin classes of a vector bundle by the theory of connection. Our results are natural generalizations of the Gauss-Bonnet Theorem.
This paper studies the relationship between the sections and the Chern or Pontrjagin classes of a vector bundle by the theory of connection. Our results are natural generalizations of the Gauss-Bonnet Theorem.
Classification : 53C05, 53C07, 55R25, 57R20
Keywords: fibre bundle; characteristic class; transgression; Poincaré dual
@article{CMJ_2006_56_2_a34,
     author = {Zhou, Jianwei},
     title = {A note on characteristic classes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {721--732},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291770},
     zbl = {1164.53334},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a34/}
}
TY  - JOUR
AU  - Zhou, Jianwei
TI  - A note on characteristic classes
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 721
EP  - 732
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a34/
LA  - en
ID  - CMJ_2006_56_2_a34
ER  - 
%0 Journal Article
%A Zhou, Jianwei
%T A note on characteristic classes
%J Czechoslovak Mathematical Journal
%D 2006
%P 721-732
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a34/
%G en
%F CMJ_2006_56_2_a34
Zhou, Jianwei. A note on characteristic classes. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 721-732. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a34/

[1] R.  Bott, L.  Tu: Differential Forms in Algebraic Topology. Springer GTM 82, , 1982. | MR | Zbl

[2] S. S.  Chern: A simple intrinsic proof of the Gauss-Bonnet formula for the closed Riemannian manifolds. Ann. Math. 45 (1944), 747–752. | DOI | MR

[3] S. S.  Chern: On the curvature integral in a Riemannian manifold. Ann. Math. 46 (1945), 674–648. | DOI | MR | Zbl

[4] S. S.  Chern: Characteristic classes of Riemannian manifolds. Ann. Math. 47 (1946), 85–121. | DOI | MR

[5] S. S.  Chern: On curvature and characteristic classes of a Riemannian manifold. Abh. Math. Sem. Univ. Hamburg 20 (1955), 117–162. | DOI | MR

[6] P.  Griffiths, J.  Harris: Principles of Algebraic Geometry. Wiley-Interscience, New York, 1978. | MR

[7] S. Kobayashi, K.  Nomizu: Foundations of Differential Geometry, Vol.  2. Interscience Publishers, New York, 1969.

[8] H. B.  Lawson, H.  Michelsohn: Spin Geometry. Princeton University Press, Princeton, 1989. | MR

[9] V.  Mathai, D.  Quillen: Superconnections, Thom classes and equivariant differential forms. Topology 25 (1986), 85–110. | DOI | MR

[10] J.  W.  Milnor, J. D.  Stasheff: Characteristic Classes. Ann. of Math. Studies, No.  76. Princeton University Press, Princeton, 1974. | MR