Keywords: fibre bundle; characteristic class; transgression; Poincaré dual
@article{CMJ_2006_56_2_a34,
author = {Zhou, Jianwei},
title = {A note on characteristic classes},
journal = {Czechoslovak Mathematical Journal},
pages = {721--732},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291770},
zbl = {1164.53334},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a34/}
}
Zhou, Jianwei. A note on characteristic classes. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 721-732. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a34/
[1] R. Bott, L. Tu: Differential Forms in Algebraic Topology. Springer GTM 82, , 1982. | MR | Zbl
[2] S. S. Chern: A simple intrinsic proof of the Gauss-Bonnet formula for the closed Riemannian manifolds. Ann. Math. 45 (1944), 747–752. | DOI | MR
[3] S. S. Chern: On the curvature integral in a Riemannian manifold. Ann. Math. 46 (1945), 674–648. | DOI | MR | Zbl
[4] S. S. Chern: Characteristic classes of Riemannian manifolds. Ann. Math. 47 (1946), 85–121. | DOI | MR
[5] S. S. Chern: On curvature and characteristic classes of a Riemannian manifold. Abh. Math. Sem. Univ. Hamburg 20 (1955), 117–162. | DOI | MR
[6] P. Griffiths, J. Harris: Principles of Algebraic Geometry. Wiley-Interscience, New York, 1978. | MR
[7] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry, Vol. 2. Interscience Publishers, New York, 1969.
[8] H. B. Lawson, H. Michelsohn: Spin Geometry. Princeton University Press, Princeton, 1989. | MR
[9] V. Mathai, D. Quillen: Superconnections, Thom classes and equivariant differential forms. Topology 25 (1986), 85–110. | DOI | MR
[10] J. W. Milnor, J. D. Stasheff: Characteristic Classes. Ann. of Math. Studies, No. 76. Princeton University Press, Princeton, 1974. | MR