Polynomial orbits in finite commutative rings
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 711-719
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $R$ be a finite commutative ring with unity. We determine the set of all possible cycle lengths in the ring of polynomials with rational integral coefficients.
Let $R$ be a finite commutative ring with unity. We determine the set of all possible cycle lengths in the ring of polynomials with rational integral coefficients.
@article{CMJ_2006_56_2_a33,
author = {Kone\v{c}n\'a, Petra},
title = {Polynomial orbits in finite commutative rings},
journal = {Czechoslovak Mathematical Journal},
pages = {711--719},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291769},
zbl = {1164.11314},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a33/}
}
Konečná, Petra. Polynomial orbits in finite commutative rings. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 711-719. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a33/
[1] P. J. Davis: Circulant Matrices. J. Wiley and Sons, NewYork-Chichester-Brisbane-Toronto, 1979. | MR | Zbl
[2] B. R. McDonald: Finite Rings with Identity. M. Dekker, New York, 1974. | MR | Zbl
[3] V. Dubovský: Polynomial cycles. Master Thesis, Department of Mathematics, Faculty of Science, University of Ostrava, 2003. (Czech)
[4] F. Halter-Koch and P. Konečná: Polynomial cycles in finite extension fields. Mathematica Slovaca 52 (2002), 531–535. | MR
[5] P. Konečná: Polynomial orbits in direct sum of finite extension fields. Studia Universitatis “Babes-Bolyai” Mathematica, Vol. XLVIII, June 2003, pp. 73–77. | MR
[6] W. Narkiewicz: Polynomial Mappings. Lecture Notes in Mathematics Vol. 1600. Springer-Verlag, Berlin, 1995. | MR