Polynomial orbits in finite commutative rings
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 711-719
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $R$ be a finite commutative ring with unity. We determine the set of all possible cycle lengths in the ring of polynomials with rational integral coefficients.
Let $R$ be a finite commutative ring with unity. We determine the set of all possible cycle lengths in the ring of polynomials with rational integral coefficients.
@article{CMJ_2006_56_2_a33,
author = {Kone\v{c}n\'a, Petra},
title = {Polynomial orbits in finite commutative rings},
journal = {Czechoslovak Mathematical Journal},
pages = {711--719},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291769},
zbl = {1164.11314},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a33/}
}
Konečná, Petra. Polynomial orbits in finite commutative rings. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 711-719. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a33/