Keywords: partial algebras; varieties; weak subalgebras; weak equations
@article{CMJ_2006_56_2_a32,
author = {Bartol, Wiktor and Rossell\'o, Francesc},
title = {The weak hereditary class of a variety},
journal = {Czechoslovak Mathematical Journal},
pages = {697--710},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291768},
zbl = {1164.08303},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a32/}
}
Bartol, Wiktor; Rosselló, Francesc. The weak hereditary class of a variety. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 697-710. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a32/
[1] H. Andréka, I. Németi: Generalization of the concept of variety and quasivariety to partial algebras through category theory. Dissertationes Math. (Rozpr. Matem.) 204, (1983). | MR
[2] P. Burmeister: A Model Theoretic Approach to Partial Algebras. Math. Research 32. Akademie-Verlag, Berlin, 1986. | MR
[3] G. Grätzer, E. T. Schmidt: Characterizations of congruence lattices of abstract algebras. Acta Sci. Math. (Szeged) 24 (1963), 34–59. | MR
[4] D. Jakubíková-Studenovská: On completions of partial monounary algebras. Czechoslovak Math. J. 38 (1988), 256–268. | MR
[5] M. Llabrés, F. Rosselló: Pushout complements for arbitrary partial algebras. In: Proc. 6th International Workshop on Theory and Application of Graph Transformation TAGT’98. Lect. Notes in Comp. Sc. 1764, 2000, pp. 131–144. | MR
[6] J. Schmidt: A homomorphism theorem for partial algebras. Colloq. Math. 21 (1970), 5–21. | DOI | MR | Zbl
[7] B. Staruch, B. Staruch: Strong regular varieties of partial algebras. Alg. Univ. 31 (1994), 157–176. | DOI | MR
[8] R. Szymański: Decidability of weak equational theories. Czechoslovak Math. J. 46 (1996), 629–664. | MR