The weak hereditary class of a variety
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 697-710
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the weak hereditary class $S_{w}(\mathcal K)$ of all weak subalgebras of algebras in a total variety $\mathcal K$. We establish an algebraic characterization, in the sense of Birkhoff’s HSP theorem, and a syntactical characterization of these classes. We also consider the problem of when such a weak hereditary class is weak equational.
We study the weak hereditary class $S_{w}(\mathcal K)$ of all weak subalgebras of algebras in a total variety $\mathcal K$. We establish an algebraic characterization, in the sense of Birkhoff’s HSP theorem, and a syntactical characterization of these classes. We also consider the problem of when such a weak hereditary class is weak equational.
Classification : 08A55, 08B99
Keywords: partial algebras; varieties; weak subalgebras; weak equations
@article{CMJ_2006_56_2_a32,
     author = {Bartol, Wiktor and Rossell\'o, Francesc},
     title = {The weak hereditary class of a variety},
     journal = {Czechoslovak Mathematical Journal},
     pages = {697--710},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291768},
     zbl = {1164.08303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a32/}
}
TY  - JOUR
AU  - Bartol, Wiktor
AU  - Rosselló, Francesc
TI  - The weak hereditary class of a variety
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 697
EP  - 710
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a32/
LA  - en
ID  - CMJ_2006_56_2_a32
ER  - 
%0 Journal Article
%A Bartol, Wiktor
%A Rosselló, Francesc
%T The weak hereditary class of a variety
%J Czechoslovak Mathematical Journal
%D 2006
%P 697-710
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a32/
%G en
%F CMJ_2006_56_2_a32
Bartol, Wiktor; Rosselló, Francesc. The weak hereditary class of a variety. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 697-710. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a32/

[1] H. Andréka, I.  Németi: Generalization of the concept of variety and quasivariety to partial algebras through category theory. Dissertationes Math. (Rozpr. Matem.) 204, (1983). | MR

[2] P. Burmeister: A Model Theoretic Approach to Partial Algebras. Math. Research  32. Akademie-Verlag, Berlin, 1986. | MR

[3] G. Grätzer, E. T.  Schmidt: Characterizations of congruence lattices of abstract algebras. Acta Sci. Math. (Szeged) 24 (1963), 34–59. | MR

[4] D. Jakubíková-Studenovská: On completions of partial monounary algebras. Czechoslovak Math.  J. 38 (1988), 256–268. | MR

[5] M.  Llabrés, F.  Rosselló: Pushout complements for arbitrary partial algebras. In: Proc. 6th International Workshop on Theory and Application of Graph Transformation TAGT’98. Lect. Notes in Comp. Sc.  1764, 2000, pp. 131–144. | MR

[6] J.  Schmidt: A homomorphism theorem for partial algebras. Colloq. Math. 21 (1970), 5–21. | DOI | MR | Zbl

[7] B.  Staruch, B.  Staruch: Strong regular varieties of partial algebras. Alg. Univ. 31 (1994), 157–176. | DOI | MR

[8] R. Szymański: Decidability of weak equational theories. Czechoslovak Math. J. 46 (1996), 629–664. | MR