The distance between fixed points of some pairs of maps in Banach spaces and applications to differential systems
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 689-695 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $T$ be a $\gamma $-contraction on a Banach space $Y$ and let $S$ be an almost $\gamma $-contraction, i.e. sum of an $\left( \varepsilon ,\gamma \right) $-contraction with a continuous, bounded function which is less than $\varepsilon $ in norm. According to the contraction principle, there is a unique element $u$ in $Y$ for which $u=Tu.$ If moreover there exists $v$ in $Y$ with $v=Sv$, then we will give estimates for $\Vert u-v\Vert .$ Finally, we establish some inequalities related to the Cauchy problem.
Let $T$ be a $\gamma $-contraction on a Banach space $Y$ and let $S$ be an almost $\gamma $-contraction, i.e. sum of an $\left( \varepsilon ,\gamma \right) $-contraction with a continuous, bounded function which is less than $\varepsilon $ in norm. According to the contraction principle, there is a unique element $u$ in $Y$ for which $u=Tu.$ If moreover there exists $v$ in $Y$ with $v=Sv$, then we will give estimates for $\Vert u-v\Vert .$ Finally, we establish some inequalities related to the Cauchy problem.
Classification : 34A12, 34C11, 34L30, 47H10, 47N20
Keywords: contraction principle; Cauchy problem
@article{CMJ_2006_56_2_a31,
     author = {Mortici, Cristinel},
     title = {The distance between fixed points of some pairs of maps in {Banach} spaces and applications to differential systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {689--695},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291767},
     zbl = {1164.47358},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a31/}
}
TY  - JOUR
AU  - Mortici, Cristinel
TI  - The distance between fixed points of some pairs of maps in Banach spaces and applications to differential systems
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 689
EP  - 695
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a31/
LA  - en
ID  - CMJ_2006_56_2_a31
ER  - 
%0 Journal Article
%A Mortici, Cristinel
%T The distance between fixed points of some pairs of maps in Banach spaces and applications to differential systems
%J Czechoslovak Mathematical Journal
%D 2006
%P 689-695
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a31/
%G en
%F CMJ_2006_56_2_a31
Mortici, Cristinel. The distance between fixed points of some pairs of maps in Banach spaces and applications to differential systems. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 689-695. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a31/

[1] C. Mortici: Approximate methods for solving the Cauchy problem. Czechoslovak Math. J. 55 (2005), 709–718. | DOI | MR

[2] C. Mortici and S. Sburlan: A coincidence degree for bifurcation problems. Nonlinear Analysis, TMA 53 (2003), 715–721. | MR

[3] C. Mortici: Operators of monotone type and periodic solutions for some semilinear problems. Mathematical Reports 54 (1/2002), 109–121. | MR

[4] C. Mortici: Semilinear equations in Hilbert spaces with quasi-positive nonlinearity. Studia Cluj. 4 (2001), 89–94. | MR | Zbl

[5] D. Pascali and S. Sburlan: Nonlinear Mappings of Monotone Type. Alphen aan den Rijn, Sijthoff & Noordhoff International Publishers, The Netherlands, 1978. | MR

[6] S. Sburlan, L. Barbu and C. Mortici: Ecuaţii Diferenţiale. Integrale şi Sisteme Dinamice. Editura Ex Ponto, Constanţa, Romania, 1999. | MR