Keywords: natural operator; product preserving bundle functor; Weil algebra; Poisson structure
@article{CMJ_2006_56_2_a30,
author = {D\k{e}becki, Jacek},
title = {Some liftings of {Poisson} structures to {Weil} bundles},
journal = {Czechoslovak Mathematical Journal},
pages = {677--687},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291766},
zbl = {1164.58308},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a30/}
}
Dębecki, Jacek. Some liftings of Poisson structures to Weil bundles. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 677-687. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a30/
[1] J. Dębecki: Linear liftings of skew-symmetric tensor fields to Weil bundles. Czechoslovak Math. J 55(130) (2005), 809-816. | DOI | MR
[2] D. J. Eck: Product-preserving functors on smooth manifolds. J. Pure Appl. Algebra 42 (1986), 133–140. | DOI | MR | Zbl
[3] J. Gancarzewicz, W. Mikulski, and Z. Pogoda: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–41. | DOI | MR
[4] J. Grabowski, P. Urbański: Tangent lifts of Poisson and related structures. J. Phys. A, Math. Gen. 28 (1995), 6743–6777. | DOI | MR
[5] G. Kainz, P. W. Michor: Natural transformations in differential geometry. Czechoslovak Mat. J. 37(112) (1987), 584–607. | MR
[6] I. Kolář: On the natural operators on vector fields. Ann. Global Anal. Geom. 6 (1988), 109–117. | DOI | MR
[7] I. Kolář: Jet-like approach to Weil bundles. Seminar Lecture Notes, Masaryk University, Brno, 2001.
[8] I. Kolář, P. W. Michor, J. Slovák: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. | MR
[9] O. O. Luciano: Categories of multiplicative functors and Weil’s infinitely near points. Nagoya Math. J. 109 (1988), 69–89. | DOI | MR | Zbl
[10] W. M. Mikulski: The linear natural operators lifting $2$-vector fields to some Weil bundles. Note Mat. 19 (1999), 213–217. | MR | Zbl
[11] I. Vaisman: Lectures on the Geometry of Poisson Manifolds. Birkhäuser-Verlag, Basel, 1994. | MR | Zbl