Conformally flat pseudo-symmetric spaces of constant type
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 649-657 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give the complete classification of conformally flat pseudo-symmetric spaces of constant type.
We give the complete classification of conformally flat pseudo-symmetric spaces of constant type.
Classification : 53C15, 53C25, 53C35
Keywords: conformally flat manifolds; pseudo-symmetric spaces
@article{CMJ_2006_56_2_a28,
     author = {Calvaruso, G.},
     title = {Conformally flat pseudo-symmetric spaces of constant type},
     journal = {Czechoslovak Mathematical Journal},
     pages = {649--657},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291764},
     zbl = {1164.53339},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a28/}
}
TY  - JOUR
AU  - Calvaruso, G.
TI  - Conformally flat pseudo-symmetric spaces of constant type
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 649
EP  - 657
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a28/
LA  - en
ID  - CMJ_2006_56_2_a28
ER  - 
%0 Journal Article
%A Calvaruso, G.
%T Conformally flat pseudo-symmetric spaces of constant type
%J Czechoslovak Mathematical Journal
%D 2006
%P 649-657
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a28/
%G en
%F CMJ_2006_56_2_a28
Calvaruso, G. Conformally flat pseudo-symmetric spaces of constant type. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 649-657. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a28/

[1] E. Boeckx, O. Kowalski and L. Vanhecke: Riemannian Manifolds of Conullity Two. World Scientific, 1996. | MR

[2] G. Calvaruso: Conformally flat semi-symmetric spaces. Arch. Math. Brno 41 (2005), 27–36. | MR | Zbl

[3] G. Calvaruso and L. Vanhecke: Special ball-homogeneous spaces. Z. Anal. Anwendungen 16 (1997), 789–800. | DOI | MR

[4] R. Deszcz: On pseudo-symmetric spaces. Bull. Soc. Math. Belgium, Série A 44 (1992), 1–34.

[5] N. Hashimoto and M. Sekizawa: Three-dimensional conformally flat pseudo-symmetric spaces of constant type. Arch. Math. (Brno) 36 (2000), 279–286. | MR

[6] O. Kowalski and M. Sekizawa: Pseudo-symmetric spaces of constant type in dimension three. Rendiconti di Matematica, Serie VII 17 (1997), 477–512. | MR

[7] R. S. Kulkarni: Curvature structures and conformal transformations. J. Differential Geom. 4 (1970), 425–451. | DOI | MR | Zbl

[8] P. Ryan: A note on conformally flat spaces with constant scalar curvature. Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971 2 (1972), 115–124. | MR | Zbl

[9] Z. I. Szabó: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, I, the local version. J. Diff. Geom. 17 (1982), 531–582. | DOI | MR

[10] H. Takagi: An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$. Tôhoku Math. J. 24 (1972), 105–108. | DOI | MR

[11] H. Takagi: Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tohôku Math. J. 27 (1975), 103–110. | DOI | MR | Zbl