Keywords: conformally flat manifolds; pseudo-symmetric spaces
@article{CMJ_2006_56_2_a28,
author = {Calvaruso, G.},
title = {Conformally flat pseudo-symmetric spaces of constant type},
journal = {Czechoslovak Mathematical Journal},
pages = {649--657},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291764},
zbl = {1164.53339},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a28/}
}
Calvaruso, G. Conformally flat pseudo-symmetric spaces of constant type. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 649-657. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a28/
[1] E. Boeckx, O. Kowalski and L. Vanhecke: Riemannian Manifolds of Conullity Two. World Scientific, 1996. | MR
[2] G. Calvaruso: Conformally flat semi-symmetric spaces. Arch. Math. Brno 41 (2005), 27–36. | MR | Zbl
[3] G. Calvaruso and L. Vanhecke: Special ball-homogeneous spaces. Z. Anal. Anwendungen 16 (1997), 789–800. | DOI | MR
[4] R. Deszcz: On pseudo-symmetric spaces. Bull. Soc. Math. Belgium, Série A 44 (1992), 1–34.
[5] N. Hashimoto and M. Sekizawa: Three-dimensional conformally flat pseudo-symmetric spaces of constant type. Arch. Math. (Brno) 36 (2000), 279–286. | MR
[6] O. Kowalski and M. Sekizawa: Pseudo-symmetric spaces of constant type in dimension three. Rendiconti di Matematica, Serie VII 17 (1997), 477–512. | MR
[7] R. S. Kulkarni: Curvature structures and conformal transformations. J. Differential Geom. 4 (1970), 425–451. | DOI | MR | Zbl
[8] P. Ryan: A note on conformally flat spaces with constant scalar curvature. Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971 2 (1972), 115–124. | MR | Zbl
[9] Z. I. Szabó: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, I, the local version. J. Diff. Geom. 17 (1982), 531–582. | DOI | MR
[10] H. Takagi: An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$. Tôhoku Math. J. 24 (1972), 105–108. | DOI | MR
[11] H. Takagi: Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tohôku Math. J. 27 (1975), 103–110. | DOI | MR | Zbl