Prime and primary submodules of certain modules
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 641-648 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we characterize all prime and primary submodules of the free $R$-module $R^{n}$ for a principal ideal domain $R$ and find the minimal primary decomposition of any submodule of $R^{n}$. In the case $n=2$, we also determine the height of prime submodules.
In this paper we characterize all prime and primary submodules of the free $R$-module $R^{n}$ for a principal ideal domain $R$ and find the minimal primary decomposition of any submodule of $R^{n}$. In the case $n=2$, we also determine the height of prime submodules.
Classification : 13C13, 13C99
Keywords: prime submodules; primary submodules; primary decomposition
@article{CMJ_2006_56_2_a27,
     author = {Amini, A. and Amini, B. and Sharif, H.},
     title = {Prime and primary submodules of certain modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {641--648},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291763},
     zbl = {1155.13305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a27/}
}
TY  - JOUR
AU  - Amini, A.
AU  - Amini, B.
AU  - Sharif, H.
TI  - Prime and primary submodules of certain modules
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 641
EP  - 648
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a27/
LA  - en
ID  - CMJ_2006_56_2_a27
ER  - 
%0 Journal Article
%A Amini, A.
%A Amini, B.
%A Sharif, H.
%T Prime and primary submodules of certain modules
%J Czechoslovak Mathematical Journal
%D 2006
%P 641-648
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a27/
%G en
%F CMJ_2006_56_2_a27
Amini, A.; Amini, B.; Sharif, H. Prime and primary submodules of certain modules. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 641-648. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a27/

[1] S. M. George, R. Y. McCasland and P. F. Smith: A principal ideal theorem analogue for modules over commutative rings. Comm. Algebra 22 (1994), 2083–2099. | DOI | MR

[2] C. P. Lu: Prime submodules of modules. Comment. Math. Univ. St. Paul 33 (1984), 61–69. | MR | Zbl

[3] H. Matsumura: Commutative Ring Theory. Cambridge University Press, 1986. | MR | Zbl

[4] R. Y. Sharp: Steps in Commutative Algebra. Cambridge University Press, 1990. | MR | Zbl

[5] Y. Tiras and A. Harmanci: On prime submodules and primary decomposition. Czechoslovak Math. J. 50 (2000), 83–90. | DOI | MR