Prime and primary submodules of certain modules
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 641-648
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we characterize all prime and primary submodules of the free $R$-module $R^{n}$ for a principal ideal domain $R$ and find the minimal primary decomposition of any submodule of $R^{n}$. In the case $n=2$, we also determine the height of prime submodules.
In this paper we characterize all prime and primary submodules of the free $R$-module $R^{n}$ for a principal ideal domain $R$ and find the minimal primary decomposition of any submodule of $R^{n}$. In the case $n=2$, we also determine the height of prime submodules.
Classification :
13C13, 13C99
Keywords: prime submodules; primary submodules; primary decomposition
Keywords: prime submodules; primary submodules; primary decomposition
@article{CMJ_2006_56_2_a27,
author = {Amini, A. and Amini, B. and Sharif, H.},
title = {Prime and primary submodules of certain modules},
journal = {Czechoslovak Mathematical Journal},
pages = {641--648},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291763},
zbl = {1155.13305},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a27/}
}
Amini, A.; Amini, B.; Sharif, H. Prime and primary submodules of certain modules. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 641-648. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a27/
[1] S. M. George, R. Y. McCasland and P. F. Smith: A principal ideal theorem analogue for modules over commutative rings. Comm. Algebra 22 (1994), 2083–2099. | DOI | MR
[2] C. P. Lu: Prime submodules of modules. Comment. Math. Univ. St. Paul 33 (1984), 61–69. | MR | Zbl
[3] H. Matsumura: Commutative Ring Theory. Cambridge University Press, 1986. | MR | Zbl
[4] R. Y. Sharp: Steps in Commutative Algebra. Cambridge University Press, 1990. | MR | Zbl
[5] Y. Tiras and A. Harmanci: On prime submodules and primary decomposition. Czechoslovak Math. J. 50 (2000), 83–90. | DOI | MR