Positive vector measures with given marginals
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 613-619
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Suppose $E$ is an ordered locally convex space, $X_{1} $ and $X_{2} $ Hausdorff completely regular spaces and $Q$ a uniformly bounded, convex and closed subset of $ M_{t}^{+}(X_{1} \times X_{2}, E) $. For $ i=1,2 $, let $ \mu _{i} \in M_{t}^{+}(X_{i}, E) $. Then, under some topological and order conditions on $E$, necessary and sufficient conditions are established for the existence of an element in $Q$, having marginals $ \mu _{1} $ and $ \mu _{2}$.
Suppose $E$ is an ordered locally convex space, $X_{1} $ and $X_{2} $ Hausdorff completely regular spaces and $Q$ a uniformly bounded, convex and closed subset of $ M_{t}^{+}(X_{1} \times X_{2}, E) $. For $ i=1,2 $, let $ \mu _{i} \in M_{t}^{+}(X_{i}, E) $. Then, under some topological and order conditions on $E$, necessary and sufficient conditions are established for the existence of an element in $Q$, having marginals $ \mu _{1} $ and $ \mu _{2}$.
Classification : 28B05, 28C05, 46E10, 46G10, 60B05
Keywords: ordered locally convex space; order convergence; marginals
@article{CMJ_2006_56_2_a25,
     author = {Khurana, Surjit Singh},
     title = {Positive vector measures with given marginals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {613--619},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291761},
     zbl = {1164.60306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a25/}
}
TY  - JOUR
AU  - Khurana, Surjit Singh
TI  - Positive vector measures with given marginals
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 613
EP  - 619
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a25/
LA  - en
ID  - CMJ_2006_56_2_a25
ER  - 
%0 Journal Article
%A Khurana, Surjit Singh
%T Positive vector measures with given marginals
%J Czechoslovak Mathematical Journal
%D 2006
%P 613-619
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a25/
%G en
%F CMJ_2006_56_2_a25
Khurana, Surjit Singh. Positive vector measures with given marginals. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 613-619. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a25/

[1] C. D. Aliprantis and O. Burkinshaw: Positive Operators. Academic Press, 1985. | MR

[2] J. Diestel and J. J. Uhl: Vector Measures. Amer. Math. Soc. Surveys, Vol. 15, Amer. Math. Soc., 1977. | MR

[3] L. Drewnowski: Topological rings of sets, continuous set functions, integration I, II. Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 20 (1972), 269–276. | MR

[4] E. Hewitt and K. Stromberg: Real and Abstract Analysis. Springer-Verlag, 1965. | MR

[5] A. Hirshberg and R. M. Shortt: A version of Strassen’s theorem for vector-valued measures. Proc. Amer. Math. Soc. 126 (1998), 1669–1671. | DOI | MR

[6] Hoffmann-Jorgensen: Probability in Banach spaces. vol. 598, Lecture Notes in Math., Springer-Verlag, 1977, pp. 1–186. | MR

[7] Jun Kawabe: A type of Strassen’s theorem for positive vector measures in dual spaces. Proc. Amer. Math. Soc. 128 (2000), 3291–3300. | DOI | MR

[8] S. S. Khurana: Extension and regularity of group-valued Baire measures. Bull. Acad. Polon. Sc., Ser. Math. Astro. Phys. 22 (1974), 891–895. | MR | Zbl

[9] S. S. Khurana: Topologies on spaces of continuous vector-valued functions. Trans. Amer. Math. Soc. 241 (1978), 195–211. | DOI | MR

[10] I. Kluvanek and G. Knowles: Vector Measures and Control Systems. North-Holland, 1976. | MR

[11] D. R. Lewis: Integration with respect to vector measures. Pac. J. Math. 33 (1970), 157–165. | DOI | MR | Zbl

[12] Peter Meyer-Nieberg: Banach Lattices. Springer-Verlag, 1991. | MR

[13] H. H. Schaefer: Topological Vector Spaces. Springer Verlag, 1986. | MR

[14] V. Strassen: The existence of probability measures with given marginals. Ann. Math. Statist. 36 (1965), 423–439. | DOI | MR | Zbl

[15] V. S. Varadarajan: Measures on topological spaces. Amer. Math. Soc. Transl. 48 (1965), 161–228. | DOI