Projective modules and prime submodules
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 601-611
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we use Zorn’s Lemma, multiplicatively closed subsets and saturated closed subsets for the following two topics: (i) The existence of prime submodules in some cases, (ii) The proof that submodules with a certain property satisfy the radical formula. We also give a partial characterization of a submodule of a projective module which satisfies the prime property.
In this paper, we use Zorn’s Lemma, multiplicatively closed subsets and saturated closed subsets for the following two topics: (i) The existence of prime submodules in some cases, (ii) The proof that submodules with a certain property satisfy the radical formula. We also give a partial characterization of a submodule of a projective module which satisfies the prime property.
Classification : 13A10, 13A99, 13C10, 13C13
Keywords: prime submodule; primary submodule; ${\scr S}$-closed subsets; the radical formula
@article{CMJ_2006_56_2_a24,
     author = {Alkan, Mustafa and Tira\c{s}, Y\"ucel},
     title = {Projective modules and prime submodules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {601--611},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291760},
     zbl = {1155.13300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a24/}
}
TY  - JOUR
AU  - Alkan, Mustafa
AU  - Tiraş, Yücel
TI  - Projective modules and prime submodules
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 601
EP  - 611
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a24/
LA  - en
ID  - CMJ_2006_56_2_a24
ER  - 
%0 Journal Article
%A Alkan, Mustafa
%A Tiraş, Yücel
%T Projective modules and prime submodules
%J Czechoslovak Mathematical Journal
%D 2006
%P 601-611
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a24/
%G en
%F CMJ_2006_56_2_a24
Alkan, Mustafa; Tiraş, Yücel. Projective modules and prime submodules. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 601-611. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a24/

[1] Z. A.  El-Bast, P. F.  Smith: Multiplication modules. Comm. in Algebra 16 (1988), 755–779. | DOI | MR

[2] J.  Jenkins, P. F.  Smith: On the prime radical of a module over a commutative ring. Comm. in Algebra 20 (1992), 3593–9602. | DOI | MR

[3] C. U.  Jensen: A remark on flat and projective modules. Canad. J.  Math. 18 (1966), 943–949. | DOI | MR | Zbl

[4] C. P.  Lu: Prime Submodules of modules. Comm. Math. Univ. Sancti Pauli 33 (1984), 61–69. | MR | Zbl

[5] C. P.  Lu: Union of prime submodules. Houston Journal of Math. 23 (1997), 203–213. | MR

[6] R. L.  McCasland, M. E.  Moore: On radicals of submodules of finitely generated modules. Canad. Math. Bull. 29 (1986), 37–39. | DOI | MR

[7] R. L.  McCasland, M. E.  Moore: On radicals of submodules. Comm. in Algebra 19 (1991), 1327–1341. | DOI | MR

[8] R. L.  McCasland, P. F.  Smith: Prime submodules of Noetherian modules. Rocky Mountain J.  Math 23 (1993), 1041–1062. | DOI | MR

[9] D.  Pusat-Yilmaz, P. F.  Smith: Modules which satisfy the radical formula. Acta. Math. Hungar. 1–2 (2002), 155–167. | DOI | MR

[10] P. F.  Smith: Primary modules over commutative rings. Glasgow Math.  J. 43 (2001), 103–111. | DOI | MR | Zbl

[11] R. Y.  Sharp: Steps in Commutative Algebra. London Mathematical Society Student Text  19. Cambridge university Press, Cambridge, 1990. | MR