Keywords: on-line ranking number; complete $n$-partite graph; hereditary and additive properties of graphs
@article{CMJ_2006_56_2_a23,
author = {Semani\v{s}in, G. and Sot\'ak, R.},
title = {A note on on-line ranking number of graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {591--599},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291759},
zbl = {1164.05360},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a23/}
}
Semanišin, G.; Soták, R. A note on on-line ranking number of graphs. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 591-599. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a23/
[1] B. Bollobás: Extremal Graph Theory. Academic Press, London, 1978. | MR
[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók, and G. Semanišin: Survey of hereditary properties of graphs. Discuss. Math. Graph Theory 17 (1997), 5–50. | DOI | MR
[3] J. I. Brown, D. G. Corneil: On generalized graph colourings. J. Graph Theory 11 (1987), 86–99. | DOI | MR
[4] E. Bruoth, M. Horňák: On-line ranking number for cycles and paths. Discuss. Math. Graph Theory 19 (1999), 175–197. | DOI | MR
[5] E. Bruoth, M. Horňák: A lower bound for on-line ranking number of a path. Discrete Math (to appear). | MR
[6] I. Schiermayer, Zs. Tuza, and M. Voigt: On-line ranking of graphs. Discrete Math. 212 (2000), 141–147. | DOI | MR
[7] M. Weaver, D. B. West: Relaxed chromatic numbers of graphs. Graphs Comb. 10 (1994), 75–93. | DOI | MR