Keywords: stochastic linear Cauchy problems; nonexistence of weak solutions; continuous modifications; $C_0$-groups of linear operators
@article{CMJ_2006_56_2_a21,
author = {Dettweiler, Johanna and Neerven, Jan van},
title = {Continuity versus nonexistence for a class of linear stochastic {Cauchy} problems driven by a {Brownian} motion},
journal = {Czechoslovak Mathematical Journal},
pages = {579--586},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291757},
zbl = {1164.35520},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a21/}
}
TY - JOUR AU - Dettweiler, Johanna AU - Neerven, Jan van TI - Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion JO - Czechoslovak Mathematical Journal PY - 2006 SP - 579 EP - 586 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a21/ LA - en ID - CMJ_2006_56_2_a21 ER -
%0 Journal Article %A Dettweiler, Johanna %A Neerven, Jan van %T Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion %J Czechoslovak Mathematical Journal %D 2006 %P 579-586 %V 56 %N 2 %U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a21/ %G en %F CMJ_2006_56_2_a21
Dettweiler, Johanna; Neerven, Jan van. Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 579-586. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a21/
[1] Z. Brzeźniak: Some remarks on stochastic integration in 2-smooth Banach spaces. Probabilistic Methods in Fluids, I. M. Davies, A. Truman et. al. (eds.), World Scientific, New Jersey, 2003, pp. 48–69. | MR
[2] Z. Brzeźniak, J. M. A. M. van Neerven: Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem. Studia Math. 143 (2000), 43–74. | DOI | MR
[3] Z. Brzeźniak, Sz. Peszat, and J. Zabczyk: Continuity of stochastic convolutions. Czechoslovak Math. J. 51 (2001), 679–684. | DOI | MR
[4] G. Da Prato, J. Zabczyk: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992. | MR
[5] G. Da Prato and J. Zabczyk: Ergodicity for Infinit-Dimensional Systems. London Math. Soc. Lect. Note Series, Vol. 229. Cambridge University Press, Cambridge, 1996. | MR
[6] E. Hausenblas, J. Seidler: A note on maximal inequality for stochastic convolutions. Czechoslovak Math. J. 51 (2001), 785–790. | DOI | MR
[7] J.-P. Kahane: Some Random Series of Functions. Second edition. Cambridge Studies in Advanced Mathematics, Vol. 5. Cambridge University Press, Cambridge, 1985. | MR
[8] O. Kallenberg: Foundations of Modern Probability. Second edition. Probability and its Applications. Springer-Verlag, New York, 2002. | MR
[9] S. Kwapień, W. A. Woyczyński: Random Series and Stochastic Integrals: Single and Multiple. Probability and its Applications. Birkhäuser-Verlag, Boston, 1992. | MR
[10] M. Ledoux, M. Talagrand: Probability in Banach Spaces Ergebnisse der Math. und ihrer Grenzgebiete, Vol. 23. Springer-Verlag, Berlin, 1991. | MR
[11] J. M. A. M. van Neerven, L. Weis: Stochastic integration of functions with values in a Banach space. Studia Math. 166 (2005), 131–170. | DOI | MR