Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 579-586
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $A={\mathrm d}/{\mathrm d}\theta $ denote the generator of the rotation group in the space $C(\Gamma )$, where $\Gamma $ denotes the unit circle. We show that the stochastic Cauchy problem \[ {\mathrm d}U(t) = AU(t)+ f\mathrm{d}b_t, \quad U(0)=0, \qquad \mathrm{(1)}\] where $b$ is a standard Brownian motion and $f\in C(\Gamma )$ is fixed, has a weak solution if and only if the stochastic convolution process $t\mapsto (f * b)_t$ has a continuous modification, and that in this situation the weak solution has a continuous modification. In combination with a recent result of Brzeźniak, Peszat and Zabczyk it follows that (1) fails to have a weak solution for all $f\in C(\Gamma )$ outside a set of the first category.
Let $A={\mathrm d}/{\mathrm d}\theta $ denote the generator of the rotation group in the space $C(\Gamma )$, where $\Gamma $ denotes the unit circle. We show that the stochastic Cauchy problem \[ {\mathrm d}U(t) = AU(t)+ f\mathrm{d}b_t, \quad U(0)=0, \qquad \mathrm{(1)}\] where $b$ is a standard Brownian motion and $f\in C(\Gamma )$ is fixed, has a weak solution if and only if the stochastic convolution process $t\mapsto (f * b)_t$ has a continuous modification, and that in this situation the weak solution has a continuous modification. In combination with a recent result of Brzeźniak, Peszat and Zabczyk it follows that (1) fails to have a weak solution for all $f\in C(\Gamma )$ outside a set of the first category.
Classification : 34F05, 34G10, 35R15, 47D05, 47D06, 47N20, 60H15
Keywords: stochastic linear Cauchy problems; nonexistence of weak solutions; continuous modifications; $C_0$-groups of linear operators
@article{CMJ_2006_56_2_a21,
     author = {Dettweiler, Johanna and Neerven, Jan van},
     title = {Continuity versus nonexistence for a class of linear stochastic {Cauchy} problems driven by a {Brownian} motion},
     journal = {Czechoslovak Mathematical Journal},
     pages = {579--586},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291757},
     zbl = {1164.35520},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a21/}
}
TY  - JOUR
AU  - Dettweiler, Johanna
AU  - Neerven, Jan van
TI  - Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 579
EP  - 586
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a21/
LA  - en
ID  - CMJ_2006_56_2_a21
ER  - 
%0 Journal Article
%A Dettweiler, Johanna
%A Neerven, Jan van
%T Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion
%J Czechoslovak Mathematical Journal
%D 2006
%P 579-586
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a21/
%G en
%F CMJ_2006_56_2_a21
Dettweiler, Johanna; Neerven, Jan van. Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 579-586. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a21/

[1] Z.  Brzeźniak: Some remarks on stochastic integration in 2-smooth Banach spaces. Probabilistic Methods in Fluids, I. M.  Davies, A.  Truman  et. al. (eds.), World Scientific, New Jersey, 2003, pp. 48–69. | MR

[2] Z.  Brzeźniak, J. M. A. M.  van Neerven: Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem. Studia Math. 143 (2000), 43–74. | DOI | MR

[3] Z.  Brzeźniak, Sz.  Peszat, and J.  Zabczyk: Continuity of stochastic convolutions. Czechoslovak Math.  J. 51 (2001), 679–684. | DOI | MR

[4] G.  Da Prato, J.  Zabczyk: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992. | MR

[5] G.  Da Prato and J.  Zabczyk: Ergodicity for Infinit-Dimensional Systems. London Math. Soc. Lect. Note Series, Vol.  229. Cambridge University Press, Cambridge, 1996. | MR

[6] E.  Hausenblas, J.  Seidler: A note on maximal inequality for stochastic convolutions. Czechoslovak Math.  J. 51 (2001), 785–790. | DOI | MR

[7] J.-P.  Kahane: Some Random Series of Functions. Second edition. Cambridge Studies in Advanced Mathematics, Vol.  5. Cambridge University Press, Cambridge, 1985. | MR

[8] O.  Kallenberg: Foundations of Modern Probability. Second edition. Probability and its Applications. Springer-Verlag, New York, 2002. | MR

[9] S.  Kwapień, W. A.  Woyczyński: Random Series and Stochastic Integrals: Single and Multiple. Probability and its Applications. Birkhäuser-Verlag, Boston, 1992. | MR

[10] M.  Ledoux, M.  Talagrand: Probability in Banach Spaces Ergebnisse der Math. und ihrer Grenzgebiete, Vol.  23. Springer-Verlag, Berlin, 1991. | MR

[11] J. M. A. M.  van Neerven, L.  Weis: Stochastic integration of functions with values in a Banach space. Studia Math. 166 (2005), 131–170. | DOI | MR