Variational measures related to local systems and the Ward property of $\scr P$-adic path bases
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 559-578
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some properties of absolutely continuous variational measures associated with local systems of sets are established. The classes of functions generating such measures are described. It is shown by constructing an example that there exists a $\mathcal{P}$-adic path system that defines a differentiation basis which does not possess Ward property.
Some properties of absolutely continuous variational measures associated with local systems of sets are established. The classes of functions generating such measures are described. It is shown by constructing an example that there exists a $\mathcal{P}$-adic path system that defines a differentiation basis which does not possess Ward property.
Classification : 26A39, 26A42, 26A45, 28A12
Keywords: local system; ${\mathcal{P}}$-adic system; differentiation basis; variational measure; Ward property
@article{CMJ_2006_56_2_a20,
     author = {Bongiorno, D. and Di Piazza, Luisa and Skvortsov, V. A.},
     title = {Variational measures related to local systems and the {Ward} property of $\scr P$-adic path bases},
     journal = {Czechoslovak Mathematical Journal},
     pages = {559--578},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291756},
     zbl = {1164.26316},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a20/}
}
TY  - JOUR
AU  - Bongiorno, D.
AU  - Di Piazza, Luisa
AU  - Skvortsov, V. A.
TI  - Variational measures related to local systems and the Ward property of $\scr P$-adic path bases
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 559
EP  - 578
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a20/
LA  - en
ID  - CMJ_2006_56_2_a20
ER  - 
%0 Journal Article
%A Bongiorno, D.
%A Di Piazza, Luisa
%A Skvortsov, V. A.
%T Variational measures related to local systems and the Ward property of $\scr P$-adic path bases
%J Czechoslovak Mathematical Journal
%D 2006
%P 559-578
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a20/
%G en
%F CMJ_2006_56_2_a20
Bongiorno, D.; Di Piazza, Luisa; Skvortsov, V. A. Variational measures related to local systems and the Ward property of $\scr P$-adic path bases. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 559-578. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a20/

[1] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli and A. I. Rubinshtein: Multiplicative systems of functions and harmonic analysis on zero-dimensional groups. Baku (1981). (Russian) | MR

[2] E. S. Bajgogin: On a dyadic Perron integral. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 48 (1993), 25–28. | MR

[3] B. Bongiorno, L. Di Piazza and D. Preiss: Infinite variation and derivatives in ${R}^n$. J. Math. Anal. Appl. 224 (1998), 22–33. | DOI | MR

[4] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: A new full descriptive characterization of the Denjoy-Perron integral. Real Anal. Exchange. 21 (1995–96), 656–663. | MR

[5] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: On variational measures related to some bases. J. Math. Anal. Appl. 250 (2000), 533–547. | DOI | MR

[6] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: On dyadic integrals and some other integrals associated with local systems. J. Math. Anal. Appl. 271 (2002), 506–524. | DOI | MR

[7] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: The Ward property for a ${\mathcal{P}}$-adic basis and the ${\mathcal{P}}$-adic integral. J. Math. Anal. Appl. 285 (2003), 578–592. | DOI | MR

[8] B. Bongiorno, W. Pfeffer and B. S. Thomson: A full descriptive definition of the gage integral. Canad. Math. Bull. 39 (1996), 390–401. | DOI | MR

[9] Z. Buczolich and W. Pfeffer: When absolutely continuous implies $\sigma $-finite. Acad. Roy. Belg. Bull. Cl. Sci. 8 (1997), 155–160. | MR

[10] Z. Buczolich and W. Pfeffer: On absolute continuity. J. Math. Anal. Appl. 222 (1998), 64–78. | DOI | MR

[11] W. Cai-shi and D. Chuan-Song: An integral involving Thomson’s local systems. Real Anal. Exchange 19 (1993/94), 248–253. | MR

[12] L. Di Piazza: Variational measures in the theory of the integration in $R^m$. Czechoslovak Math. J. 51 (2001), 95–110. | DOI | MR

[13] V. Ene: Real functions-Current Topics. Lecture Notes in Math., Vol. 1603, Springer-Verlag, 1995. | MR | Zbl

[14] V. Ene: Thomson’s variational measures. Real Anal. Exchange 24 (1998/99), 523–565. | MR

[15] Sh. Fu: Path integral: an inversion of path derivatives. Real Anal. Exchange 20 (1994–95), 340–346. | DOI | MR

[16] B. Golubov, A. Efimov and V. A. Skvortsov: Walsh series and transforms-Theory and applications. Kluwer Academic Publishers, 1991. | MR

[17] R. A. Gordon: The inversion of approximate and dyadic derivatives using an extension of the Henstock integral. Real Anal. Exchange 16 (1990–91), 154–168. | MR

[18] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics., Vol. 4, AMS, Providence, 1994. | MR | Zbl

[19] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties. Czechoslovak Math. J. 45 (1995), 79–106. | MR

[20] J. Kurzweil and J. Jarník: Differentiability and integrability in $n$-dimension with respect to $\alpha $-regular intervals. Results Math. 21 (1992), 138–151. | DOI | MR

[21] Tuo-Yeong Lee: A full descriptive definition of the Henstok-Kurzwail integral in the Euclidean space. Proceedings of London Math. Society 87 (2003), 677–700. | DOI | MR

[22] K. M. Ostaszewski: Henstock integration in the plane. Memoirs of the AMS, Providence Vol. 353, 1986. | MR | Zbl

[23] W. F. Pfeffer: The Riemann Approach to Integration. Cambridge Univ. Press, Cambridge, 1993. | MR | Zbl

[24] W. F. Pfeffer: The Lebesgue and Denjoy-Perron integrals from a descriptive point of view. Ricerche di Matematica Vol. 48, 1999. | MR | Zbl

[25] S. Saks: Theory of the integral. Dover, New York, 1964. | MR

[26] V. A. Skvortsov: Variation and variational measures in integration theory and some applications. J. Math. Sci. (New York) 91 (1998), 3293–3322. | DOI | MR

[27] V. A. Skvortsov and M. P. Koroleva: Series in multiplicative systems convergent to Denjoy-integrable functions. Mat. sb. 186 (1995), 129–150. | MR

[28] V. A. Skvortsov and F. Tulone: Generalized Henstock integrals in the theory of series with respect to multiplicative system. Vestnik Moskov. Gos. Univ. Ser. Mat. Mekh. 4 (2004), 7–11. | MR

[29] V. A. Skvortsov and Yu. A. Zherebyov: On classes of functions generating absolutely continuous variational measures. Real. Anal. Exchange 30 (2004–2005), 361–372. | MR

[30] V. A. Skvortsov and Yu. A. Zherebyov: On Radon-Nikodim derivative for the variational measure constructed by dyadic basis. Vestnik Moskov. Univ. Ser. I Mat. Mekh. (2004), 6–12 (Engl. transl. Moscow Univ. Math. Bull. 59 (2004), 5–11). | MR

[31] B. S. Thomson: Real functions. Lecture Notes in Math., Vol. 1170, Springer-Verlag. 1985. | MR

[32] B. S. Thomson: Derivation bases on the real line. Real Anal. Exchange 8 (1982/83), 67–207 and 278–442.

[33] B. S. Thomson: Some property of variational measures. Real Anal. Exchange 24 (1998/99), 845–853. | MR

[34] F. Tulone: On the Ward Theorem for ${\mathcal{P}}$-adic path bases associated with a bounded sequence ${\mathcal{P}}$. Math. Bohem. 129 (2004), 313–323. | MR