Keywords: local system; ${\mathcal{P}}$-adic system; differentiation basis; variational measure; Ward property
@article{CMJ_2006_56_2_a20,
author = {Bongiorno, D. and Di Piazza, Luisa and Skvortsov, V. A.},
title = {Variational measures related to local systems and the {Ward} property of $\scr P$-adic path bases},
journal = {Czechoslovak Mathematical Journal},
pages = {559--578},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291756},
zbl = {1164.26316},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a20/}
}
TY - JOUR AU - Bongiorno, D. AU - Di Piazza, Luisa AU - Skvortsov, V. A. TI - Variational measures related to local systems and the Ward property of $\scr P$-adic path bases JO - Czechoslovak Mathematical Journal PY - 2006 SP - 559 EP - 578 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a20/ LA - en ID - CMJ_2006_56_2_a20 ER -
%0 Journal Article %A Bongiorno, D. %A Di Piazza, Luisa %A Skvortsov, V. A. %T Variational measures related to local systems and the Ward property of $\scr P$-adic path bases %J Czechoslovak Mathematical Journal %D 2006 %P 559-578 %V 56 %N 2 %U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a20/ %G en %F CMJ_2006_56_2_a20
Bongiorno, D.; Di Piazza, Luisa; Skvortsov, V. A. Variational measures related to local systems and the Ward property of $\scr P$-adic path bases. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 559-578. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a20/
[1] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli and A. I. Rubinshtein: Multiplicative systems of functions and harmonic analysis on zero-dimensional groups. Baku (1981). (Russian) | MR
[2] E. S. Bajgogin: On a dyadic Perron integral. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 48 (1993), 25–28. | MR
[3] B. Bongiorno, L. Di Piazza and D. Preiss: Infinite variation and derivatives in ${R}^n$. J. Math. Anal. Appl. 224 (1998), 22–33. | DOI | MR
[4] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: A new full descriptive characterization of the Denjoy-Perron integral. Real Anal. Exchange. 21 (1995–96), 656–663. | MR
[5] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: On variational measures related to some bases. J. Math. Anal. Appl. 250 (2000), 533–547. | DOI | MR
[6] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: On dyadic integrals and some other integrals associated with local systems. J. Math. Anal. Appl. 271 (2002), 506–524. | DOI | MR
[7] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: The Ward property for a ${\mathcal{P}}$-adic basis and the ${\mathcal{P}}$-adic integral. J. Math. Anal. Appl. 285 (2003), 578–592. | DOI | MR
[8] B. Bongiorno, W. Pfeffer and B. S. Thomson: A full descriptive definition of the gage integral. Canad. Math. Bull. 39 (1996), 390–401. | DOI | MR
[9] Z. Buczolich and W. Pfeffer: When absolutely continuous implies $\sigma $-finite. Acad. Roy. Belg. Bull. Cl. Sci. 8 (1997), 155–160. | MR
[10] Z. Buczolich and W. Pfeffer: On absolute continuity. J. Math. Anal. Appl. 222 (1998), 64–78. | DOI | MR
[11] W. Cai-shi and D. Chuan-Song: An integral involving Thomson’s local systems. Real Anal. Exchange 19 (1993/94), 248–253. | MR
[12] L. Di Piazza: Variational measures in the theory of the integration in $R^m$. Czechoslovak Math. J. 51 (2001), 95–110. | DOI | MR
[13] V. Ene: Real functions-Current Topics. Lecture Notes in Math., Vol. 1603, Springer-Verlag, 1995. | MR | Zbl
[14] V. Ene: Thomson’s variational measures. Real Anal. Exchange 24 (1998/99), 523–565. | MR
[15] Sh. Fu: Path integral: an inversion of path derivatives. Real Anal. Exchange 20 (1994–95), 340–346. | DOI | MR
[16] B. Golubov, A. Efimov and V. A. Skvortsov: Walsh series and transforms-Theory and applications. Kluwer Academic Publishers, 1991. | MR
[17] R. A. Gordon: The inversion of approximate and dyadic derivatives using an extension of the Henstock integral. Real Anal. Exchange 16 (1990–91), 154–168. | MR
[18] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics., Vol. 4, AMS, Providence, 1994. | MR | Zbl
[19] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties. Czechoslovak Math. J. 45 (1995), 79–106. | MR
[20] J. Kurzweil and J. Jarník: Differentiability and integrability in $n$-dimension with respect to $\alpha $-regular intervals. Results Math. 21 (1992), 138–151. | DOI | MR
[21] Tuo-Yeong Lee: A full descriptive definition of the Henstok-Kurzwail integral in the Euclidean space. Proceedings of London Math. Society 87 (2003), 677–700. | DOI | MR
[22] K. M. Ostaszewski: Henstock integration in the plane. Memoirs of the AMS, Providence Vol. 353, 1986. | MR | Zbl
[23] W. F. Pfeffer: The Riemann Approach to Integration. Cambridge Univ. Press, Cambridge, 1993. | MR | Zbl
[24] W. F. Pfeffer: The Lebesgue and Denjoy-Perron integrals from a descriptive point of view. Ricerche di Matematica Vol. 48, 1999. | MR | Zbl
[25] S. Saks: Theory of the integral. Dover, New York, 1964. | MR
[26] V. A. Skvortsov: Variation and variational measures in integration theory and some applications. J. Math. Sci. (New York) 91 (1998), 3293–3322. | DOI | MR
[27] V. A. Skvortsov and M. P. Koroleva: Series in multiplicative systems convergent to Denjoy-integrable functions. Mat. sb. 186 (1995), 129–150. | MR
[28] V. A. Skvortsov and F. Tulone: Generalized Henstock integrals in the theory of series with respect to multiplicative system. Vestnik Moskov. Gos. Univ. Ser. Mat. Mekh. 4 (2004), 7–11. | MR
[29] V. A. Skvortsov and Yu. A. Zherebyov: On classes of functions generating absolutely continuous variational measures. Real. Anal. Exchange 30 (2004–2005), 361–372. | MR
[30] V. A. Skvortsov and Yu. A. Zherebyov: On Radon-Nikodim derivative for the variational measure constructed by dyadic basis. Vestnik Moskov. Univ. Ser. I Mat. Mekh. (2004), 6–12 (Engl. transl. Moscow Univ. Math. Bull. 59 (2004), 5–11). | MR
[31] B. S. Thomson: Real functions. Lecture Notes in Math., Vol. 1170, Springer-Verlag. 1985. | MR
[32] B. S. Thomson: Derivation bases on the real line. Real Anal. Exchange 8 (1982/83), 67–207 and 278–442.
[33] B. S. Thomson: Some property of variational measures. Real Anal. Exchange 24 (1998/99), 845–853. | MR
[34] F. Tulone: On the Ward Theorem for ${\mathcal{P}}$-adic path bases associated with a bounded sequence ${\mathcal{P}}$. Math. Bohem. 129 (2004), 313–323. | MR